1 Branching processes

1.1 Definitions

Recall:

DEF 13.1 A branching process is an SP of the form:

- Let $X(i, n), i \geq 1, n \geq 1,$ be an array of iid $\mathbb{Z}_+\text{-valued RVs with finite mean}$ $m = \mathbb{E}[X(1, 1)] < +\infty,$ and inductively,

$$Z_n = \sum_{1 \leq i \leq Z_{n-1}} X(i, n)$$

To avoid trivialities we assume $\mathbb{P}[X(1, 1) = i] < 1$ for all $i \geq 0.$

LEM 13.2 $M_n = m^{-n}Z_n$ is a nonnegative MG.

Proof: Use the following lemma (proved in homework):

LEM 13.3 If $Y_1 = Y_2$ a.s. on $B \in \mathcal{F}$ then $\mathbb{E}[Y_1 \mid \mathcal{F}] = \mathbb{E}[Y_2 \mid \mathcal{F}]$ a.s. on $B.$

Then, on $\{Z_{n-1} = k\},$

$$\mathbb{E}[Z_n \mid \mathcal{F}_{n-1}] = \mathbb{E}\left[\sum_{1 \leq j \leq k} X(j, n) \mid \mathcal{F}_{n-1} \right] = mk = mZ_{n-1}.$$

This is true for all $k.$

COR 13.4 $M_n \to M_\infty < +\infty$ a.s. and $\mathbb{E}[M_\infty] \leq 1.$

The martingale convergence theorem in itself tells us little about the limit. Here we derive a more detailed picture of the limiting behavior—starting with extinction.
1.2 Extinction

Let $p_i = \mathbb{P}[X(1, 1) = i]$ for all i and for $s \in [0, 1]$

$$f(s) = p_0 + p_1 s + p_2 s^2 + \cdots = \sum_{i \geq 0} p_i s^i.$$

Similarly, $f_n(s) = \mathbb{E}[s^{Z_n}]$. One could hope to compute the generating function of the limit—but this is rarely possible. Instead, we derive some of its properties. In particular, note that

$$\pi \equiv \mathbb{P}[Z_n = 0 \text{ for some } n \geq 0] = \lim_{n \to +\infty} \mathbb{P}[Z_n = 0] = \lim_{n \to +\infty} f_n(0),$$

using the fact that 0 is an absorbing state and monotonicity. Moreover, by the Markov property, f_n as a natural recursive form:

$$f_n(s) = \mathbb{E}[s^{Z_n}] = \mathbb{E}[\mathbb{E}[s^{Z_n} | \mathcal{F}_{n-1}]] = \mathbb{E}[f(s)^{Z_{n-1}}] = f_{n-1}(f(s)) = \cdots = f^{(n)}(s).$$

So we need to study iterates of f. We will prove:

THM 13.5 (Extinction) The probability of extinction π is given by the smallest fixed point of f in $[0, 1]$:

1. If $m \leq 1$ then $\pi = 1$.
2. If $m > 1$ then $\pi < 1$.

We first summarize some properties of f. To avoid uninteresting cases, we assume $p_0 + p_1 < 1$.

LEM 13.6 The function f on $[0, 1]$ satisfies:

1. $f(0) = p_0$, $f(1) = 1$
2. f is indefinitely differentiable on $[0, 1)$
3. f is strictly convex and increasing
Lecture 13: Branching processes

4. \(\lim_{s \uparrow 1} f'(s) = m < +\infty \)

Proof: See Baby Rudin for the relevant power series facts. 1. is clear by definition. The function \(f \) is a power series with radius of convergence \(R \geq 1 \). This implies 2. In particular,

\[f'(s) = \sum_{i \geq 1} ip_i s^{i-1} \geq 0, \]

and

\[f''(s) = \sum_{i \geq 2} i(i-1)p_i s^{i-2} > 0. \]

because we must have \(p_i > 0 \) for some \(i > 1 \) by assumption. This proves 3. Since \(m < +\infty \), \(f'(1) \) is well defined and \(f' \) is continuous on \([0, 1]\). □

COR 13.7 (Fixed points) We have:

1. If \(m > 1 \) then \(f \) has a unique fixed point \(\pi_0 \in [0, 1) \)

2. If \(m \leq 1 \) then \(f(t) > t \) for \(t \in [0, 1) \) (Let \(\pi_0 = 1 \) in that case.)

Proof: Since \(f'(1) = m > 1 \), there is \(\delta > 0 \) s.t. \(f(1-\delta) < 1-\delta \). On the other hand \(f(0) \geq 0 \) so by continuity of \(f \) there must be a fixed point in \([0, 1-\delta)\). Moreover, by strict convexity, if \(r \) is a fixed point then \(f(s) < s \) for \(s \in (r, 1) \), proving uniqueness.

The second part follows by strict convexity and monotonicity. □

COR 13.8 (Dynamics) We have:

1. If \(t \in [0, \pi_0) \), then \(f^{(n)}(t) \uparrow \pi_0 \)

2. If \(t \in (\pi_0, 1) \) then \(f^{(n)}(t) \downarrow \pi_0 \)

Proof: We only prove 1. The argument for 2. is similar. By monotonicity, for \(t \in [0, \pi_0) \), we have \(t < f(t) < f(\pi_0) = \pi_0 \). Iterating

\[t < f^{(1)}(t) < \cdots < f^{(n)}(t) < f^{(n)}(\pi_0) = \pi_0. \]

So \(f^{(n)}(t) \uparrow L \leq \pi_0 \). By continuity of \(f \) we can take the limit inside of

\[f^{(n)}(t) = f(f^{(n-1)}(t)), \]

to get \(L = f(L) \). So by definition of \(\pi_0 \) we must have \(L = \pi_0 \). □

Theorem 13.5 follows.
1.3 Discussion

The previous theorem “essentially” settles the subcritical and critical cases. For the supercritical case, however, it remains to understand when $M_\infty = 0$. When $M_\infty \equiv 0$ for instance, our convergence theorem provides less precise information. Note that convergence of expectations would help exclude that case since that would imply $E[M_\infty] = 1$. But this requires some conditions. For instance, note that when $m \leq 1$

\[1 = E[M_n] \rightarrow E[M_\infty] = 0. \]

In other words, the Martingale Convergence Theorem does not hold in L^1 under the same conditions.

More generally, one could conjecture that $M_\infty = 0$ exactly when we have extinction. We will see conditions under which this is true next time.

2 Martingales in L^2

2.1 Preliminaries

DEF 13.9 For $1 \leq p < +\infty$, we say that $X \in L^p$ if

\[\|X\|_p = E[|X|^p]^{1/p} < +\infty. \]

By Jensen’s inequality, for $1 \leq p \leq r < +\infty$ we have $\|X\|_p \leq \|X\|_r$ if $X \in L^r$.

Proof: For $n \geq 0$, let

\[X_n = (|X| \wedge n)^p. \]

Take $c(x) = x^{r/p}$ on $(0, +\infty)$ which is convex. Then

\[(E[X_n])^{r/p} \leq E[(X_n)^{r/p}] = E[(|X| \wedge n)^r] \leq E[|X|^r]. \]

Take $n \to \infty$ and use (MON).

DEF 13.10 We say that X_n converges to X_∞ in L^p if $\|X_n - X_\infty\|_p \to 0$. By the previous result, convergence on L^r implies convergence in L^p for $r \geq p \geq 1$. (Moreover, by Chebyshev’s inequality, convergence in L^p implies convergence in probability.)

LEM 13.11 Assume $X_n, X_\infty \in L^1$. Then

\[\|X_n - X_\infty\|_1 \to 0, \]

implies

\[E[X_n] \to E[X_\infty]. \]
Proof: Note that
\[
|\mathbb{E}[X_n] - \mathbb{E}[X_\infty]| \leq \mathbb{E}|X_n - X_\infty| \to 0.
\]

DEF 13.12 We say that \(\{X_n\}_n\) is bounded in \(L^p\) if
\[
\sup_n \|X_n\|_p < +\infty.
\]

2.2 L2 convergence

THM 13.13 Let \(M\) be a MG with \(M_n \in L^2\). Then \(M\) is bounded in \(L^2\) if and only if
\[
\sum_{k \geq 1} \mathbb{E}[(M_k - M_{k-1})^2] < +\infty.
\]
When this is the case, \(M_n\) converges a.s. and in \(L^2\). (In particular, it converges in \(L^1\).)

Proof:

LEM 13.14 (Orthogonality of increments) Let \(s \leq t \leq u \leq v\). Then,
\[
\langle M_t - M_s, M_v - M_u \rangle = 0.
\]

Proof: Use \(M_u = \mathbb{E}[M_v | F_u]\), \(M_t - M_s \in F_u\) and apply the \(L^2\) characterization of conditional expectations.

That implies
\[
\mathbb{E}[M_n^2] = \mathbb{E}[M_0^2] + \sum_{1 \leq i \leq n} \mathbb{E}[(M_i - M_{i-1})^2],
\]
proving the first claim.

By monotonicity of norms, \(M\) is bounded in \(L^2\) implies \(M\) bounded in \(L^1\) which, in turn, implies \(M\) converges a.s. Then using (FATOU) in
\[
\mathbb{E}[(M_{n+k} - M_n)^2] = \sum_{n+1 \leq i \leq n+k} \mathbb{E}[(M_i - M_{i-1})^2],
\]
gives
\[
\mathbb{E}[(M_\infty - M_n)^2] \leq \sum_{n+1 \leq i} \mathbb{E}[(M_i - M_{i-1})^2].
\]
The RHS goes to 0 which proves the second claim.
3 Back to branching processes

THM 13.15 Let \(Z \) be a branching process with \(Z_0 = 1 \), \(m = \mathbb{E}[X(1,1)] > 1 \) and \(\sigma^2 = \text{Var}[X(1,1)] < +\infty \). Then, \(M_n = m^{-n}Z_n \) converges in \(L^2 \), and in particular, \(\mathbb{E}[M_\infty] = 1 \).

Proof: We bound \(\mathbb{E}[M_n^2] \) by computing it explicitly by induction. From the orthogonality of increments

\[
\mathbb{E}[M_n^2] = \mathbb{E}[M_{n-1}^2] + \mathbb{E}[(M_n - M_{n-1})^2].
\]

On \(\{ Z_{n-1} = k \} \)

\[
\mathbb{E}[(M_n - M_{n-1})^2 | \mathcal{F}_{n-1}] = m^{-2n} \mathbb{E}[(Z_n - mZ_{n-1})^2 | \mathcal{F}_{n-1}] = m^{-2n} \mathbb{E}[(\sum_{i=1}^{k} X(i,n) - mk)^2 | \mathcal{F}_{n-1}] = m^{-2n}k\sigma^2 = m^{-2n}Z_{n-1}\sigma^2.
\]

Hence

\[
\mathbb{E}[M_n^2] = \mathbb{E}[M_{n-1}^2] + m^{-1}\sigma^2.
\]

Since \(\mathbb{E}[M_0^2] = 1 \),

\[
\mathbb{E}[M_n^2] = 1 + \sigma^2 \sum_{i=2}^{n+1} m^{-i},
\]

which is uniformly bounded when \(m > 1 \). So \(M_n \) converges in \(L^2 \). Finally by (FATOU)

\[
\mathbb{E}|M_\infty| \leq \sup \|M_n\|_1 \leq \sup \|M_n\|_2 < +\infty
\]

and

\[
|\mathbb{E}[M_n] - \mathbb{E}[M_\infty]| \leq \|M_n - M_\infty\|_1 \leq \|M_n - M_\infty\|_2,
\]

implies the convergence of expectations.

In a homework problem, we will show that under the assumptions of the previous theorem

\[
\{ M_\infty = 0 \} = \{ Z_n = 0, \text{ for some } n \},
\]

and

\[
\mathbb{P}[M_\infty = 0] = \pi,
\]

the probability of extinction.
EX 13.16 (Geometric Offspring) Assume

\[0 < p < 1, \quad q = 1 - p, \quad p_i = pq^i, \quad \forall i \geq 0, \quad m = \frac{q}{p}. \]

Then

\[f(s) = \frac{p}{1 - sq}, \quad \pi = \min\{\frac{p}{q}, 1\}. \]

- **Case \(m \neq 1 \)** If \(G \) is a \(2 \times 2 \) matrix, denote

\[G(s) = \frac{G_{11}s + G_{12}}{G_{21}s + G_{22}}. \]

Then \(G(H(s)) = (GH)(s) \). By diagonalization,

\[
\begin{pmatrix}
0 & p \\
-q & 1
\end{pmatrix}
^n = (q - p)^{-1}
\begin{pmatrix}
1 & p \\
q & 1
\end{pmatrix}
\begin{pmatrix}
p^n & 0 \\
0 & q^n
\end{pmatrix}
\begin{pmatrix}
q & -p \\
1 & 1
\end{pmatrix}
\]

(the columns of the first matrix on the RHS are the right eigenvectors) leading to

\[f_n(s) = \frac{pm^n(1 - s) + qs - p}{qm^n(1 - s) + qs - p}. \]

In particular, when \(m < 1 \) we have \(\pi = \lim f_n(0) = 1 \). On the other hand, if \(m > 1 \), we have by (DOM) for \(\lambda \geq 0 \)

\[
\mathbb{E}[\exp(-\lambda M_\infty)] = \lim_n f_n(\exp(-\lambda/m^n)) = \frac{p\lambda + q - p}{q\lambda + q - p} = \pi + (1 - \pi) \frac{(1 - \pi)}{\lambda (1 - \pi)}.
\]

The first term corresponds to a point mass at 0 and the second term corresponds to an exponential with mean \(1/(1 - \pi) \).

- **Case \(m = 1 \)** By induction

\[f_n(s) = \frac{n - (n - 1)s}{n + 1 - ns}, \]

so that

\[\mathbb{P}[Z_n > 0] = 1 - f_n(0) = \frac{1}{n + 1}, \]

and

\[
\mathbb{E}[e^{-\lambda Z_n/n} \mid Z_n > 0] = \frac{f_n(e^{-\lambda/n}) - f_n(0)}{1 - f_n(0)} \rightarrow \frac{1}{1 + \lambda},
\]

which is the Laplace transform of an exponential mean 1. This is consistent with \(\mathbb{E}[Z_n] = 1 \).

References

