We first review a few basic concepts.

1.1 Vectors and norms

For a vector
\[\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_d \end{bmatrix} \in \mathbb{R}^d \]
the Euclidean norm of \(\mathbf{x} \) is defined as
\[
\| \mathbf{x} \|_2 = \sqrt{\sum_{i=1}^{d} x_i^2} = \sqrt{\mathbf{x}^T \mathbf{x}} = \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle}
\]
where \(\mathbf{x}^T \) denotes the transpose of \(\mathbf{x} \) (seen as a single-column matrix) and
\[
\langle \mathbf{u}, \mathbf{v} \rangle = \sum_{i=1}^{d} u_i v_i
\]is the inner product (https://en.wikipedia.org/wiki/Inner_product_space) of \(\mathbf{u} \) and \(\mathbf{v} \). This is also known as the 2-norm.
More generally, for $p \geq 1$, the p-norm (https://en.wikipedia.org/wiki/Lp_space#The_p-norm_in_countably_infinite_dimensions_and_\ell_p_spaces) of x is given by

$$
\|x\|_p = \left(\sum_{i=1}^{d} |x_i|^p \right)^{1/p}.
$$

Here (https://commons.wikimedia.org/wiki/File:Lp_space_animation.gif#/media/File:Lp_space_animation.gif) is a nice visualization of the unit ball, that is, the set \{ $x : \|x\|_p \leq 1$\}, under varying p.

There exist many more norms. Formally:

Definition (Norm): A norm is a function ℓ from \mathbb{R}^d to \mathbb{R}_+ that satisfies for all $a \in \mathbb{R}$, $u, v \in \mathbb{R}^d$

- (Homogeneity): $\ell(au) = |a| \ell(u)$
- (Triangle inequality): $\ell(u + v) \leq \ell(u) + \ell(v)$
- (Point-separating): $\ell(u) = 0$ implies $u = 0$.

Theorem (Cauchy–Schwarz): For all $u, v \in \mathbb{R}^d$

$$
|\langle u, v \rangle| \leq \|u\|_2 \|v\|_2.
$$

The Euclidean distance (https://en.wikipedia.org/wiki/Euclidean_distance) between two vectors u and v in \mathbb{R}^d is the 2-norm of their difference

$$
d(u, v) = \|u - v\|_2.
$$

Throughout we use the notation $\|x\| = \|x\|_2$ to indicate the 2-norm of x unless specified otherwise.
We will often work with collections of \(n \) vectors \(\mathbf{x}_1, \ldots, \mathbf{x}_n \) in \(\mathbb{R}^d \) and it will be convenient to stack them up into a matrix

\[
X = \begin{bmatrix}
 \mathbf{x}_1^T \\
 \mathbf{x}_2^T \\
 \vdots \\
 \mathbf{x}_n^T
\end{bmatrix} = \begin{bmatrix}
 x_{11} & x_{12} & \cdots & x_{1d} \\
 x_{21} & x_{22} & \cdots & x_{2d} \\
 \vdots & \vdots & \ddots & \vdots \\
 x_{n1} & x_{n2} & \cdots & x_{nd}
\end{bmatrix},
\]

where \(^T \) indicates the transpose (https://en.wikipedia.org/wiki/Transpose):

\[
A = \begin{bmatrix}
 1 & 2 \\
 3 & 4 \\
 5 & 6
\end{bmatrix}
\]

(Source (https://commons.wikimedia.org/wiki/File:Matrix_transpose.gif))

NUMERICAL CORNER In Julia, a vector can be obtained in different ways. The following method gives a row vector as a two-dimensional array.

In [1]:
Julia version: 1.5.1
using LinearAlgebra, Statistics, Plots

In [2]:
t = [1. 3. 5.]

Out[2]:
1×3 Array{Float64,2}:
1.0 3.0 5.0

To turn it into a one-dimensional array, use `vec` (https://docs.julialang.org/en/v1/base/arrays/#Base.vec).

In [3]:
vec(t)

Out[3]:
3-element Array{Float64,1}:
1.0
3.0
5.0
To construct a one-dimensional array directly, use commas to separate the entries.

```
In [4]: u = [1., 3., 5., 7.]
```

```
Out[4]: 4-element Array{Float64,1}:
  1.0
  3.0
  5.0
  7.0
```

To obtain the norm of a vector, we can use the function `norm` (which requires the `LinearAlgebra` package):

```
In [5]: norm(u)
```

```
Out[5]: 9.16515138991168
```

which we can check "by hand"

```
In [6]: sqrt(sum(u.^2))
```

```
Out[6]: 9.16515138991168
```

The above is called broadcasting (https://docs.julialang.org/en/v1.2/manual/mathematical-operations/#man-dot-operators-1). It applies the operator following it (in this case taking a square) element-wise.

Exercise: Compute the inner product of \(\mathbf{u} = (1, 2, 3, 4) \) and \(\mathbf{v} = (5, 4, 3, 2) \) without using the function `dot`. Hint: The product of two real numbers \(a \) and \(b \) is \(a \times b \).

```
In [7]: # Try it!
u = [1., 2., 3., 4.];
   # EDIT THIS LINE: define v
   # EDIT THIS LINE: compute the inner product between u and v
```

\(<\)

To create a matrix out of two vectors, we use the function `hcat` (https://docs.julialang.org/en/v1.2/base/arrays/#Base.hcat) and transpose.
In [8]:
 u = [1., 3., 5., 7.];
 v = [2., 4., 6., 8.];
 X = hcat(u,v)'

Out[8]: 2×4 Adjoint{Float64,Array{Float64,2}}:
1.0 3.0 5.0 7.0
2.0 4.0 6.0 8.0

With more than two vectors, we can use the reduce (https://docs.julialang.org/en/v1/base/collections/#Base.reduce-Tuple(Any,Any)) function.

In [9]:
 u = [1., 3., 5., 7.];
 v = [2., 4., 6., 8.];
 w = [9., 8., 7., 6.];
 X = reduce(hcat, [u, v, w])'

Out[9]: 3×4 Adjoint{Float64,Array{Float64,2}}:
1.0 3.0 5.0 7.0
2.0 4.0 6.0 8.0
9.0 8.0 7.0 6.0

1.2 Multivariable calculus

1.2.1 Limits and continuity

Throughout this section, we use the Euclidean norm \(\|x\| = \sqrt{\sum_{i=1}^{d} x_i^2} \) for \(x = (x_1, \ldots, x_d)^T \in \mathbb{R}^d \).

The open \(r \)-ball around \(x \in \mathbb{R}^d \) is the set of points within Euclidean distance \(r \) of \(x \), that is,
\[
B_r(x) = \{ y \in \mathbb{R}^d : \|y - x\| < r \}.
\]

A point \(x \in \mathbb{R}^d \) is a limit point (or accumulation point) of a set \(A \subseteq \mathbb{R}^d \) if every open ball around \(x \) contains an element \(a \) of \(A \) such that \(a \neq x \). A set \(A \) is closed if every limit point of \(A \) belongs to \(A \).
A point $x \in \mathbb{R}^d$ is an interior point of a set $A \subseteq \mathbb{R}^d$ if there exists an $r > 0$ such that $B_r(x) \subseteq A$. A set A is open if it consists entirely of interior points.

(Source: https://commons.wikimedia.org/wiki/File:Open_set_-_example.png)
A set $A \subseteq \mathbb{R}^d$ is bounded if there exists an $r > 0$ such that $A \subseteq B_r(0)$, where $0 = (0, \ldots, 0)^T$.

Definition (Limits of a Function): Let $f : D \to \mathbb{R}$ be a real-valued function on $D \subseteq \mathbb{R}^d$. Then f is said to have a limit $L \in \mathbb{R}$ as x approaches a if: for any $\varepsilon > 0$, there exists a $\delta > 0$ such that $|f(x) - L| < \varepsilon$ for all $x \in D \cap B_\delta(a) \setminus \{a\}$. This is written as

$$\lim_{x \to a} f(x) = L.$$

Note that we explicitly exclude a itself from having to satisfy the condition $|f(x) - L| < \varepsilon$. In particular, we may have $f(a) \neq L$. We also do not restrict a to be in D.

Definition (Continuous Function): Let $f : D \to \mathbb{R}$ be a real-valued function on $D \subseteq \mathbb{R}^d$. Then f is said to be continuous at $a \in D$ if

$$\lim_{x \to a} f(x) = f(a).$$
We will not prove the following fundamental analysis result, which will be useful below. See e.g. Wikipedia (https://en.wikipedia.org/wiki/Extreme_value_theorem). Suppose \(f : \mathbb{D} \to \mathbb{R} \) is defined on a set \(\mathbb{D} \subseteq \mathbb{R}^d \). We say that \(f \) attains a maximum value \(M \) at \(z^* \) if \(f(z^*) = M \) and \(M \geq f(x) \) for all \(x \in \mathbb{D} \). Similarly, we say \(f \) attains a minimum value \(m \) at \(z^*_m \) if \(f(z^*_m) = m \) and \(m \geq f(x) \) for all \(x \in \mathbb{D} \).

Theorem (Extreme Value): Let \(f : \mathbb{D} \to \mathbb{R} \) be a real-valued, continuous function on a nonempty, closed, bounded set \(\mathbb{D} \subseteq \mathbb{R}^d \). Then \(f \) attains a maximum and a minimum on \(\mathbb{D} \).

1.2.2 Derivatives

We begin by reviewing the single-variable case. Recall that the derivative of a function of a real variable is the rate of change of the function with respect to the change in the variable. Formally:
Definition (Derivative): Let \(f : D \to \mathbb{R} \) where \(D \subseteq \mathbb{R} \) and let \(x_0 \in D \) be an interior point of \(D \). The derivative of \(f \) at \(x_0 \) is

\[
f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}
\]

provided the limit exists. \(\triangleright \)

(Source (https://commons.wikimedia.org/wiki/File:Tangent_to_a_curve.svg))

Exercise: Let \(f \) and \(g \) have derivatives at \(x \) and let \(\alpha \) and \(\beta \) be constants. Show that

\[
[\alpha f(x) + \beta g(x)]' = \alpha f'(x) + \beta g'(x).
\]

\(\triangleright \)

The following lemma encapsulates a key insight about the derivative of \(f \) at \(x_0 \): it tells us where to find smaller values.

Lemma (Descent Direction): Let \(f : D \to \mathbb{R} \) with \(D \subseteq \mathbb{R} \) and let \(x_0 \in D \) be an interior point of \(D \) where \(f'(x_0) \) exists. If \(f'(x_0) > 0 \), then there is an open ball \(B_{\delta}(x_0) \subseteq D \) around \(x_0 \) such that for each \(x \) in \(B_{\delta}(x_0) \):

(a) \(f(x) > f(x_0) \) if \(x > x_0 \), (b) \(f(x) < f(x_0) \) if \(x < x_0 \).

If instead \(f'(x_0) < 0 \), the opposite holds.

Proof idea: Follows from the definition of the derivative by taking \(\epsilon \) small enough that \(f'(x_0) - \epsilon > 0 \).
Proof: Take \(\epsilon = f'(x_0)/2 \). By definition of the derivative, there is \(\delta > 0 \) such that
\[
f'(x_0) - \frac{f(x_0 + h) - f(x_0)}{h} < \epsilon
\]
for all \(0 < h < \delta \). Rearranging gives
\[
f(x_0 + h) > f(x_0) + [f'(x_0) - \epsilon]h > f(x_0)
\]
by our choice of \(\epsilon \). The other direction is similar. \(\square \)

For functions of several variables, we have the following generalization. As before, we let \(e_i \in \mathbb{R}^d \) be the \(i \)-th standard basis vector.

Definition (Partial Derivative): Let \(f : D \to \mathbb{R} \) where \(D \subseteq \mathbb{R}^d \) and let \(x_0 \in D \) be an interior point of \(D \). The partial derivative of \(f \) at \(x_0 \) with respect to \(x_i \) is
\[
\frac{\partial f(x_0)}{\partial x_i} \overset{\text{def}}{=} \lim_{h \to 0} \frac{f(x_0 + he_i) - f(x_0)}{h}
\]
provided the limit exists. If \(\frac{\partial f(x_0)}{\partial x_i} \) exists and is continuous in an open ball around \(x_0 \) for all \(i \), then we say that \(f \) continuously differentiable at \(x_0 \). \(\triangleleft \)

Definition (Jacobian): Let \(f = (f_1, \ldots, f_m) : D \to \mathbb{R}^m \) where \(D \subseteq \mathbb{R}^d \) and let \(x_0 \in D \) be an interior point of \(D \) where \(\frac{\partial f_i(x_0)}{\partial x_j} \) exists for all \(i, j \). The Jacobian of \(f \) at \(x_0 \) is the \(d \times m \) matrix
\[
J_f(x_0) = \begin{pmatrix}
\frac{\partial f_1(x_0)}{\partial x_1} & \cdots & \frac{\partial f_1(x_0)}{\partial x_d} \\
\vdots & \ddots & \vdots \\
\frac{\partial f_m(x_0)}{\partial x_1} & \cdots & \frac{\partial f_m(x_0)}{\partial x_d}
\end{pmatrix}.
\]

For a real-valued function \(f : D \to \mathbb{R} \), the Jacobian reduces to the row vector
\[
J_f(x_0) = \nabla f(x_0)^T
\]
where the vector
\[
\nabla f(x_0) = \left(\frac{\partial f(x_0)}{\partial x_1}, \ldots, \frac{\partial f(x_0)}{\partial x_d} \right)^T
\]
is the gradient of \(f \) at \(x_0 \). \(\triangleleft \)
Example: Consider the affine function
\[f(x) = q^T x + r \]
where \(x = (x_1, \ldots, x_d)^T, q = (q_1, \ldots, q_d)^T \in \mathbb{R}^d \). The partial derivatives of the linear term are given by
\[\frac{\partial}{\partial x_i} [q^T x] = \frac{\partial}{\partial x_i} \left[\sum_{j=1}^{d} q_j x_j \right] = q_i. \]
So the gradient of \(f \) is
\[\nabla f(x) = q. \]
\[\triangleright \]

Example: Consider the quadratic function
\[f(x) = \frac{1}{2} x^T P x + q^T x + r. \]
where \(x = (x_1, \ldots, x_d)^T, q = (q_1, \ldots, q_d)^T \in \mathbb{R}^d \) and \(P \in \mathbb{R}^{d \times d} \). The partial derivatives of the quadratic term are given by
\[\frac{\partial}{\partial x_i} [x^T P x] = \frac{\partial}{\partial x_i} \left[\sum_{j,k=1}^{d} P_{jk} x_j x_k \right] = \frac{\partial}{\partial x_i} \left[P_{ii} x_i^2 + \sum_{j=1, j \neq i}^{d} P_{ji} x_j x_i + \sum_{k=1, k \neq i}^{d} P_{ik} x_i x_k \right] = 2 P_{ii} x_i + \sum_{j=1, j \neq i}^{d} P_{ji} x_j + \sum_{k=1, k \neq i}^{d} P_{ik} x_k = \sum_{j=1}^{d} [P^T]_{ij} x_j + \sum_{k=1}^{d} [P]_{ik} x_k. \]
So the gradient of \(f \) is
\[\nabla f(x) = \frac{1}{2} [P + P^T] x + q. \]
\[\triangleright \]

1.2.3 Optimization

Optimization problems play an important role in data science. Here we look at unconstrained optimization problems of the form:
\[\min_{x \in \mathbb{R}^d} f(x) \]
where \(f : \mathbb{R}^d \to \mathbb{R} \). Ideally, we would like to find a global minimizer to the optimization problem above.
Definition (Global Minimizer): Let \(f : \mathbb{R}^d \to \mathbb{R} \). The point \(\mathbf{x}^* \in \mathbb{R}^d \) is a global minimizer of \(f \) over \(\mathbb{R}^d \) if \(f(\mathbf{x}) \geq f(\mathbf{x}^*) \), \(\forall \mathbf{x} \in \mathbb{R}^d \).

Example: The function \(f(x) = x^2 \) over \(\mathbb{R} \) has a global minimizer at \(x^* = 0 \). Indeed, we clearly have \(f(x) \geq 0 \) for all \(x \) while \(f(0) = 0 \).

\begin{verbatim}
In [10]:
f(x) = x^2
x = LinRange(-2, 2, 100)
y = f(x)
plot(x, y, lw=2, legend=false)
\end{verbatim}

Out[10]:

The function \(f(x) = e^x \) over \(\mathbb{R} \) does not have a global minimizer. Indeed, \(f(x) > 0 \) but no \(x \) achieves 0. And, for any \(m > 0 \), there is a small enough such that \(f(x) < m \).
The function \(f(x) = (x + 1)^2(x - 1)^2 \) over \(\mathbb{R} \) has two global minimizers at \(x^* = -1 \) and \(x^{**} = 1 \). Indeed, \(f(x) \geq 0 \) and \(f(x) = 0 \) if and only if \(x = x^* \) or \(x = x^{**} \).
In general, finding a global minimizer and certifying that one has been found can be difficult unless some special structure is present. Therefore weaker notions of solution have been introduced.

Definition (Local Minimizer): Let $f : \mathbb{R}^d \to \mathbb{R}$. The point $\mathbf{x}^* \in \mathbb{R}^d$ is a local minimizer of f over \mathbb{R}^d if there is $\delta > 0$ such that

$$f(\mathbf{x}) \geq f(\mathbf{x}^*), \quad \forall \mathbf{x} \in B_\delta(\mathbf{x}^*) \setminus \{\mathbf{x}^*\}.$$

If the inequality is strict, we say that \mathbf{x}^* is a strict local minimizer. □
In words, \mathbf{x}^* is a local minimizer if there is open ball around \mathbf{x}^* where it attains the minimum value. The difference between global and local minimizers is illustrated in the next figure.

![Extrema Example](https://commons.wikimedia.org/wiki/File:Extrema_example_original.svg)

Local minimizers can be characterized in terms of the gradient, at least in terms of a necessary condition. We will prove this result later in the course.

Theorem (First-Order Necessary Condition): Let $f : \mathbb{R}^d \rightarrow \mathbb{R}$ be continuously differentiable on \mathbb{R}^d. If \mathbf{x}_0 is a local minimizer, then $\nabla f(\mathbf{x}_0) = 0$.

1.3 Probability

1.3.1 Expectation, variance and Chebyshev's inequality
Recall that the expectation (https://en.wikipedia.org/wiki/Expected_value) (or mean) of a function h of a discrete random variable X taking values in \mathcal{X} is given by

$$\mathbb{E}[h(X)] = \sum_{x \in \mathcal{X}} h(x) p_X(x)$$

where $p_X(x) = \mathbb{P}[X = x]$ is the probability mass function (https://en.wikipedia.org/wiki/Probability_mass_function) (PMF) of X. In the continuous case, we have

$$\mathbb{E}[h(X)] = \int h(x) f_X(x) \, dx$$

if f_X is the probability density function (https://en.wikipedia.org/wiki/Probability_density_function) (PDF) of X.

Two key properties of the expectation:

- **linearity**, that is,
 $$\mathbb{E}[\alpha h(X) + \beta] = \alpha \mathbb{E}[h(X)] + \beta$$

- **monotonicity**, that is, if $h_1(x) \leq h_2(x)$ for all x then
 $$\mathbb{E}[h_1(X)] \leq \mathbb{E}[h_2(X)]$$

The variance (https://en.wikipedia.org/wiki/Variance) of a real-valued random variable X is

$$\text{Var}[X] = \mathbb{E}[(X - \mathbb{E}[X])^2]$$

and its standard deviation is $\sigma_X = \sqrt{\text{Var}[X]}$. The variance does not satisfy linearity, but we have the following property

$$\text{Var}[\alpha X + \beta] = \alpha^2 \text{Var}[X].$$

The variance is a measure of the typical deviation of X around its mean. A quantified version of this statement is given by Chebyshev’s inequality.

Lemma (Chebyshev) For a random variable X with finite variance, we have for any $\alpha > 0$

$$\mathbb{P}[|X - \mathbb{E}[X]| \geq \alpha] \leq \frac{\text{Var}[X]}{\alpha^2}.$$

The intuition is the following: if the expected squared deviation from the mean is small, then the deviation from the mean is unlikely to be large.
To formalize this we prove a more general inequality, Markov's inequality. In words, if a non-negative random variable has a small expectation then it is unlikely to be large.

Lemma (Markov) Let Z be a non-negative random variable with finite expectation. Then, for any $\beta > 0$,
$$
P[Z \geq \beta] \leq \frac{\mathbb{E}[Z]}{\beta}.
$$

Proof idea: The quantity $\beta \mathbb{P}[Z \geq \beta]$ is a lower bound on the expectation of Z restricted to the range $\{Z \geq \beta\}$, which by non-negativity is itself lower bounded by $\mathbb{E}[Z]$.

Proof: Formally, let 1_A be the indicator of the event A, that is, it is the random variable that is 1 when A occurs and 0 otherwise. By definition, the expectation of 1_A is
$$
\mathbb{E}[A] = 0 \mathbb{P}[1_A = 0] + 1 \mathbb{P}[1_A = 1] = \mathbb{P}[A]
$$
where A^c is the complement of A. Hence, by linearity and monotonicity,
$$
\beta \mathbb{P}[Z \geq \beta] = \beta \mathbb{E}[1_{Z \geq \beta}] = \mathbb{E}[\beta 1_{Z \geq \beta}] \leq \mathbb{E}[Z].
$$
Rearranging gives the claim. □

Finally we return to the proof of Chebyshev.

Proof idea (Chebyshev): Simply apply Markov to the squared deviation of X from its mean.

Proof (Chebyshev): Let $Z = (X - \mathbb{E}[X])^2$, which is non-negative by definition. Hence, by Markov, for any $\beta = \alpha^2 > 0$
$$
\mathbb{P}[|X - \mathbb{E}[X]| \geq \alpha] = \mathbb{P}[(X - \mathbb{E}[X])^2 \geq \alpha^2] = \mathbb{P}[Z \geq \beta] \leq \frac{\mathbb{E}[Z]}{\beta} \leq \frac{\text{Var}[X]}{\alpha^2}
$$
where we used the definition of the variance in the last equality. □

Chebyshev's inequality is particularly useful when combined with independence.

1.3.2 Independence and limit theorems
Recall that discrete random variables X and Y are independent if their joint PMF factorizes, that is

$$p_{X,Y}(x, y) = p_X(x) p_Y(y), \quad \forall x, y$$

where $p_{X,Y}(x, y) = \mathbb{P}[X = x, Y = y]$. Similarly, continuous random variables X and Y are independent if their joint PDF factorizes. One consequence is that expectations of products of single-variable functions factorize as well, that is, for functions g and h we have

$$\mathbb{E}[g(X)h(Y)] = \mathbb{E}[g(X)] \mathbb{E}[h(Y)].$$

The latter has the following important implication for the variance. If X_1, \ldots, X_n are independent, real-valued random variables, then

$$\text{Var}[X_1 + \cdots + X_n] = \text{Var}[X_1] + \cdots + \text{Var}[X_n].$$

Notice that, unlike the case of the expectation, this equation for the variance requires independence in general.

Applied to the sample mean of n independent, identically distributed (i.i.d.) random variables X_1, \ldots, X_n, we obtain

$$\text{Var} \left[\frac{1}{n} \sum_{i=1}^{n} X_i \right] = \frac{1}{n^2} \sum_{i=1}^{n} \text{Var}[X_i]$$

$$= \frac{1}{n^2} n \text{Var}[X_1]$$

$$= \frac{\text{Var}[X_1]}{n}.$$

So the variance of the sample mean decreases as n gets large, while its expectation remains the same by linearity

$$\mathbb{E} \left[\frac{1}{n} \sum_{i=1}^{n} X_i \right] = \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}[X_i]$$

$$= \frac{1}{n} \mathbb{E}[X_1]$$

$$= \mathbb{E}[X_1].$$

Together with Chebyshev's inequality, we immediately get that the sample mean approaches its expectation in the following probabilistic sense.

Theorem (Law of Large Numbers) Let X_1, \ldots, X_n be i.i.d. For any $\varepsilon > 0$, as $n \to +\infty$,

$$\mathbb{P} \left[\left| \frac{1}{n} \sum_{i=1}^{n} X_i - \mathbb{E}[X_1] \right| \geq \varepsilon \right] \to 0.$$
Proof: By Chebyshev and the formulas above,
\[
\mathbb{P}\left[\left|\frac{1}{n} \sum_{i=1}^{n} X_i - \mathbb{E}[X_1]\right| \geq \varepsilon\right] = \mathbb{P}\left[\left|\frac{1}{n} \sum_{i=1}^{n} X_i - \mathbb{E}\left[\frac{1}{n} \sum_{i=1}^{n} X_i\right]\right| \geq \varepsilon\right] \\
\leq \frac{\text{Var}\left[\frac{1}{n} \sum_{i=1}^{n} X_i\right]}{\varepsilon^2} \\
= \frac{\text{Var}[X_1]}{n\varepsilon^2} \\
\rightarrow 0
\]
as \(n \to +\infty\). \(\square\)

NUMERICAL CORNER We can use simulations to confirm the Law of Large Numbers. Recall that a uniform random variable over the interval \([a, b]\) has density
\[
f_X(x) = \begin{cases} \frac{1}{b-a} & x \in [a, b] \\ 0 & \text{o.w.} \end{cases}
\]
We write \(X \sim U[a, b]\). We can obtain a sample from \(U[0, 1]\) by using the function `rand` (https://docs.julialang.org/en/v1.2/stdlib/Random/#Base.rand) in Julia.

```julia
In [13]: rand(1)
Out[13]: 1-element Array{Float64,1}:
0.6833180625581647
```

Now we take \(n\) samples from \(U[0, 1]\) and compute their sample mean. We repeat \(k\) times and display the empirical distribution of the sample means using an histogram (https://en.wikipedia.org/wiki/Histogram).

```julia
function lln_unif(n, k)
    sample_mean = [mean(rand(n)) for i=1:k]
    histogram(sample_mean,
               legend=false, title="n=$n", xlims=(0,1), nbin=15) # "$n" is string with value n
end

Out[14]: lln_unif (generic function with 1 method)
```
Taking n much larger leads to more concentration around the mean.
Exercise: Recall that the cumulative distribution function (CDF) of a random variable X is defined as

$$F_X(z) = \mathbb{P}[X \leq z], \quad \forall z \in \mathbb{R}.$$

(a) Let \mathcal{Z} be the interval where $F_X(z) \in (0, 1)$ and assume that F_X is strictly increasing on \mathcal{Z}. Let $U \sim \text{U}[0, 1]$. Show that

$$\mathbb{P}[F_X^{-1}(U) \leq z] = F_X(z).$$

(b) Generate a sample from $\text{U}[a, b]$ for arbitrary a, b using rand and the observation in (a). This is called the inverse transform sampling method.

```
In [17]: # Try it!
a, b = -1, 1;
X = rand(1);
# EDIT THIS LINE: transform X to obtain a random variable Y ~ U[a,b]
```

△