We make a few more observations that will hint at things to come in subsequent topics.

3.1 Matrix form of \(k \)-means clustering

The \(k \)-means clustering objective can be written in matrix form. We will need a notion of matrix norm. A natural way to define a norm for matrices is to notice that an \(n \times m \) matrix \(A \) can be thought of as an \(nm \) vector, with one element for each entry of \(A \). Indeed, addition and scalar multiplication work exactly in the same way. Hence, we can define the 2-norm of a matrix in terms of the sum of its squared entries.

Definition (Frobenius Norm): The Frobenius norm of an \(n \times m \) matrix \(A \in \mathbb{R}^{n \times m} \) is defined as

\[
\|A\|_F = \sqrt{\sum_{i=1}^{n} \sum_{j=1}^{m} a_{ij}^2}.
\]

As we indicated before, for a collection of \(n \) data vectors \(x_1, \ldots, x_n \) in \(\mathbb{R}^d \), it is often convenient to stack them up into a matrix

\[
X = \begin{bmatrix} x_1^T \\ x_2^T \\ \vdots \\ x_n^T \end{bmatrix} = \begin{bmatrix} x_{11} & x_{12} & \cdots & x_{1d} \\ x_{21} & x_{22} & \cdots & x_{2d} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n1} & x_{n2} & \cdots & x_{nd} \end{bmatrix}.
\]
We can do the same with cluster representatives. Given \(\mu_1, \ldots, \mu_k \) also in \(\mathbb{R}^d \), we form the matrix

\[
U = \begin{bmatrix}
\mu_{11}^T & \mu_{12}^T & \cdots & \mu_{1d}^T \\
\mu_{21}^T & \mu_{22}^T & \cdots & \mu_{2d}^T \\
\vdots & \vdots & \ddots & \vdots \\
\mu_{k1}^T & \mu_{k2}^T & \cdots & \mu_{kd}^T
\end{bmatrix}.
\]

Perhaps less obviously, cluster assignments can also be encoded in matrix form. Recall that, given a partition \(C_1, \ldots, C_k \) of \([n] \), we define \(c(i) = j \) if \(i \in C_j \). For \(i = 1, \ldots, n \) and \(j = 1, \ldots, k \), set \(z_{ij} = 1 \) if \(c(i) = j \) and 0 otherwise, and let \(Z \) be the \(n \times k \) matrix with entries \(z_{ij} \). That is, row \(i \) has exactly one entry with value 1, corresponding to the assigned cluster \(c(i) \) of data point \(x_i \), and all other entries 0.

With this notation, the representative of the cluster assigned to data point \(x_i \) is obtained through the matrix product

\[
\mu_{c(i)}^T = \sum_{j=1}^k z_{ij} \mu_j^T = (ZU)_{i,:}
\]

So

\[
G(C_1, \ldots, C_k; \mu_1, \ldots, \mu_k) = \sum_{i=1}^n \|x_i - \mu_{c(i)}\|^2
\]

\[
= \sum_{i=1}^n \sum_{\ell=1}^d (x_{i,\ell} - (ZU)_{i,\ell})^2
\]

\[
= \|X - ZU\|_F^2,
\]

where we used the definition of the Frobenius norm.

In other words, minimizing the \(k \)-means objective is equivalent to finding a matrix factorization of the form \(ZU \) that is a good fit to the data matrix \(X \) in Frobenius form. This formulation expresses in a more compact form the idea of representing \(X \) as a combination of a small number of representatives. Matrix factorization will come back repeatedly in this course.

NUMERICAL CORNER In Julia, the Frobenius norm of a matrix can be computed using the function `norm` (https://docs.julialang.org/en/v1/stdlib/LinearAlgebra/#LinearAlgebra.norm).

In [1]: # Julia version: 1.5.1
using Plots, LinearAlgebra, Statistics
To start explaining the quote above, we consider a simple experiment. Let $C = [-1/2, 1/2]^d$ be the d-cube with side lengths 1 centered at the origin and let $B = \{x \in \mathbb{R}^d : \|x\| \leq 1/2\}$ be the inscribed d-ball. In $d = 2$ dimensions:

$$\begin{align*}
\text{a - Side of square} \\
r - \text{Radius of circle}
\end{align*}$$

(Source: https://www.geeksforgeeks.org/program-to-calculate-area-of-an-circle-inscribed-in-a-square/)

Now pick a point \mathbf{X} uniformly at random in C. What is the probability that it falls in B?

To generate \mathbf{X}, we pick d independent random variables $X_1, \ldots, X_d \sim \text{U}[-1/2, 1/2]$, and form the vector $\mathbf{X} = (X_1, \ldots, X_d)$. Indeed, the PDF of \mathbf{X} is then $f_{\mathbf{X}}(\mathbf{x}) = 1^d = 1$ if $\mathbf{x} \in C$ and 0 otherwise.

The event we are interested in is $A = \{\|\mathbf{X}\|\leq 1/2\}$. The uniform distribution over the set C has the property that $\Pr[A]$ is the volume of A divided by the volume of C. In this case, the volume of C is $1^d = 1$ and the volume of A has an explicit formula (https://en.wikipedia.org/wiki/Volume_of_an_n-ball).
This leads to the following surprising fact:

Theorem (High-dimensional Cube) Let \(B = \{ \mathbf{x} \in \mathbb{R}^d : \|\mathbf{x}\| \leq 1/2 \} \) and \(C = [-1/2, 1/2]^d \). Pick \(\mathbf{X} \sim \mathbf{U}[C] \). Then, as \(d \to +\infty \),
\[
\mathbb{P}[\mathbf{X} \in B] \to 0.
\]

In words, in high dimension if one picks a point at random from the cube, it is unlikely to be close to the origin. Instead it is likely to be in the corners. A geometric interpretation is that a high-dimensional cube is a bit like a spiky ball. A visualization of this theorem:

![Visualization](https://www.visiondummy.com/2014/04/curse-dimensionality-affect-classification/)

We give a proof based on Chebyshev’s inequality. It has the advantage of providing some insight into this counter-intuitive phenomenon by linking it to the concentration of sums of independent random variables, in this case the squared norm of \(\mathbf{X} \).

Proof idea: We think of \(\|\mathbf{X}\|^2 \) as a sum of independent random variables and apply Chebyshev’s inequality. It implies that the norm of \(\mathbf{X} \) is concentrated around its mean, which grows like \(\sqrt{d} \). The latter is larger than \(1/2 \) for \(d \) large.

Proof: Write out \(\|\mathbf{X}\|^2 = \sum_{i=1}^{d} X_i^2 \). Using linearity of expectation and the fact that the \(X_i \)'s are independent, we get
\[
\mathbb{E} \left[\|\mathbf{X}\|^2 \right] = \sum_{i=1}^{d} \mathbb{E}[X_i^2] = d \mathbb{E}[X_1^2]
\]
and
\[
\text{Var} \left[\|\mathbf{X}\|^2 \right] = \sum_{i=1}^{d} \text{Var}[X_i^2] = d \text{Var}[X_1^2].
\]
We bound the probability of interest as follows. We first square the norm and center around the mean:

$$\mathbb{P}[\|X\| \leq 1/2] = \mathbb{P}[\|X\|^2 \leq 1/4]$$

$$= \mathbb{P}[\|X\|^2 - \mathbb{E}[\|X\|^2] \leq 1/4 - d\mathbb{E}[X_1^2]].$$

Now notice that $\mathbb{E}[X_1^2] > 0$ does not depend on d. Take d large enough that $d\mathbb{E}[X_1^2] > 1/4$. We then use the following fact: if $\alpha = d\mathbb{E}[X_1^2] - 1/4 > 0$ and $Z = \|X\|^2 - \mathbb{E}[\|X\|^2]$, we can write by monotonicity and the definition of the absolute value

$$\mathbb{P}[Z \leq -\alpha] \leq \mathbb{P}[Z \leq -\alpha \text{ or } Z \geq \alpha] = \mathbb{P}[|Z| \geq \alpha].$$

We arrive at

$$\mathbb{P}[\|X\| \leq 1/2] \leq \mathbb{P}[\|X\|^2 - \mathbb{E}[\|X\|^2] \geq d\mathbb{E}[X_1^2] - 1/4].$$

We can now apply Chebyshev’s inequality to the right-hand side, which gives

$$\mathbb{P}[\|X\| \leq 1/2] \leq \frac{\mathbb{V}ar[\|X\|^2]}{(d\mathbb{E}[X_1^2] - 1/4)^2}$$

$$= \frac{d\mathbb{V}ar[X_1^2]}{(d\mathbb{E}[X_1^2] - 1/4)^2}$$

$$= \frac{1}{d} \cdot \frac{\mathbb{V}ar[X_1^2]}{(\mathbb{E}[X_1^2] - 1/(4d))^2}. $$

Again, $\mathbb{V}ar[X_1^2]$ does not depend on d. So the right-hand side goes to 0 as $d \to +\infty$, as claimed. □

We will see later in the course that this high-dimensional phenomenon has implications for data science problems. It is behind what is referred to as the Curse of Dimensionality (https://en.wikipedia.org/wiki/Curse_of_dimensionality).

NUMERICAL CORNER We can check the theorem in a simulation. Here we pick n points uniformly at random in the d-cube C, for a range of dimensions $[d_{\min}, d_{\max}]$. We then plot the frequency of landing in the inscribed d-ball B and see that it rapidly converges to 0. Alternatively, we could just plot the formula for the volume of B. But knowing how to do simulations is useful in situations where explicit formulas are unavailable or intractable.

```plaintext
In [4]: function highdim_cube(dmax, n)
  in_ball = zeros(Float64, dmax) # in-ball freq
  for d=1:dmax # for each dimension
    in_ball[d] = mean(((norm(rand(d) .- 1/2) < 1/2) for i=1:n))
  end
  plot(1:dmax, in_ball,
       legend=false, markershape=:diamond, xlabel="dim", ylabel="in-bal 1 freq")
end

Out[4]: highdim_cube (generic function with 1 method)
```
3.2.2 Gaussians in high dimension [optional]

In this optional section, we turn our attention to the Gaussian (or Normal) distribution (https://en.wikipedia.org/wiki/Normal_distribution) and its behavior in high dimension. Using Chebyshev’s inequality, we show that a standard Normal vector has the following counter-intuitive property in high dimension: a typical draw has 2-norm that is highly likely to be around \sqrt{d}. Visually, when d is large, the joint PDF looks something like this:
This is unexpected because the joint PDF is maximized at $\mathbf{x} = \mathbf{0}$ for all d (including $d = 1$ as can be seen in the figure above). But the rough intuition is the following: (1) there is only "one way" to obtain $\|\mathbf{X}\|^2 = 0$ -- every coordinate must be 0 by the point-separating property of the 2-norm; (2) on the other hand, there are "many ways" to obtain $\|\mathbf{X}\|^2 = \sqrt{d}$ -- and that compensates for the lower density.
Theorem (High-dimensional Gaussians) Let \mathbf{X} be a standard Normal d-vector. Then, for any $\varepsilon > 0$,
\[
P \left[\|\mathbf{X}\| \notin (\sqrt{d(1 - \varepsilon)}, \sqrt{d(1 + \varepsilon)}) \right] \to 0
\]
as $d \to +\infty$.

Proof idea: We apply Chebyshev’s inequality to the squared norm, which is a sum of independent random variables.

Proof: Let $Z = \|\mathbf{X}\|^2 = \sum_{i=1}^{d} X_i^2$ and notice that, by definition, it is a sum of independent random variables. Appealing to the expectation and variance formulas from the previous sections:
\[
\mathbb{E}[\|\mathbf{X}\|^2] = d \mathbb{E}[X_1^2] = d \text{Var}[X_1] = d
\]
and
\[
\text{Var}[\|\mathbf{X}\|^2] = d \text{Var}[X_1^2]
\]
where $\text{Var}[X_1^2]$ does not depend on d. By Chebyshev’s inequality
\[
P \left[\|\mathbf{X}\| \notin (d(1 - \varepsilon), d(1 + \varepsilon)) \right] = P[\|\mathbf{X}\|^2 - d \geq \varepsilon d] \leq \frac{d \text{Var}[X_1^2]}{\varepsilon^2 d^2} = \frac{\text{Var}[X_1^2]}{\varepsilon^2}.
\]
Taking a square root inside the probability on the leftmost side and taking a limit as $d \to +\infty$ on the rightmost side gives the claim. \square

NUMERICAL CORNER We check our claim in a simulation. We generate standard Normal d-vectors using the `randn` function and plot the histogram of their 2-norm.

```julia
In [6]: function normal_shell(d, n)
    one_sample_norm = [norm(randn(d)) for i=1:n]
    histogram(one_sample_norm,
               legend=false, xlims=(0,maximum(one_sample_norm)), nbin=20)
end
Out[6]: normal_shell (generic function with 1 method)
```
In [7]: normal_shell(1, 10000)

Out[7]:

In higher dimension:

In [8]: normal_shell(100, 10000)

Out[8]:
Applying Chebyshev’s inequality to sums of independent random variables has useful statistical implications: it shows that, with a large enough number of samples \(n \), the sample mean is close to the population mean. Hence it allows us to infer properties of a population from samples. Interestingly, one can apply a similar argument to a different asymptotic regime: the limit of large dimension \(d \). But as we will see in this section, the statistical implications are quite different.

3.2.1 High-dimensional cube