A phylogenetic mixture model is a weighted average of the site pattern frequencies of phylogenetic trees having same or different topologies. We are interested in finding out the topology of the mixture of two phylogenetic trees - specifically, quartet trees. We will discuss two cases: one in which the mixing of two trees gives rise to a tree of same topology and the other in which mixing gives rise to a tree of different topology. For example if we mix two $12|34$ trees, sometimes we can get a $12|34$ tree and sometimes we can get a $13|24$ tree. We will derive the conditions on the branch lengths of the original trees that gives rise to these two cases.

The fidelity, θ_e of an edge e with length $\gamma(e)$ is defined as,

$$\theta_e = \exp\left[-2\gamma(e) \right]$$

The fidelity of an edge varies between 0 and 1 for positive edge lengths.

Hadamard matrix H is the matrix of -1s and 1s and each column is orthogonal to every other column. It is used to compute the Fourier transform of the split probabilities to get $q_A = (H p)_A$ where $A \subset \{1, 2, \ldots, n\}$.

The Fourier transform of the split probabilities can be written as the product of fidelities (Theorem 8.6.3, Semple and Steel),

$$q_A = \prod_{e \in P(T,A)} \theta_e$$

where $P(T, A)$ is the set of edges that lie in the set of edge disjoint paths connecting the taxa in A to each other.

Proposition 1: The fidelity of a pendant edge a on a quartet $ab|cd$ is given by,

$$\theta_a = \sqrt{\frac{q_{ab} q_{ac}}{q_{bc}}}$$

For a given phylogenetic tree topology, the Fourier transform of the split probabilities must satisfy a set of equations called *phylogenetic invariants* and for a
Topology of Phylogenetic Mixtures

quartet tree $ab|cd$, the invariants are given by,

$$q_{abcd} - q_{ab} q_{cd} = 0\quad (3)$$
$$q_{ac} q_{bd} - q_{ad} q_{bc} = 0\quad (4)$$

q is the Fourier transform of the site pattern frequencies when the edge fidelities lie between 0 and 1 and they satisfy phylogenetic invariants.

We will now derive the conditions such that the mixture of two 12|34 trees results in a tree of the same 12|34 topology. We will use parameters $\{q, t, \theta\}$ to represent parameters of one tree and $\{r, s, \psi\}$ to represent parameters of the other tree.

Since the mixture has a 12|34 topology, it must satisfy the phylogenetic invariants, (3), (4) of the 12|34 tree. We first solve for invariant (3),

$$(\alpha + 1 - \alpha)(\alpha q_{1234} + (1 - \alpha) r_{1234}) - (\alpha q_{12} + (1 - \alpha) r_{12})(\alpha q_{34} + (1 - \alpha) r_{34}) = 0\quad (5)$$

This can be simplified to get,

$$q_{1234} + r_{1234} - (q_{12} r_{34} + r_{12} q_{34}) = 0\quad (6)$$

$$(q_{12} - r_{12})(q_{34} - r_{34}) = 0\quad (7)$$

Substituting (2), we get,

$$(\theta_1 \theta_2 - \psi_1 \psi_2)(\theta_3 \theta_4 - \psi_3 \psi_4) = 0.$$

This means that the branch lengths should satisfy,

$$t_1 + t_2 = s_1 + s_2\quad \text{or}\quad t_3 + t_4 = s_3 + s_4.\quad (8)$$

We now solve for invariant (4),

$$q_{13} r_{24} + r_{13} q_{24} - (q_{13} r_{24} + q_{13} r_{24}) = 0\quad (9)$$

Substituting (2), we get,

$$\left(\frac{\theta_1}{\theta_2} - \frac{\psi_1}{\psi_2}\right)\left(\frac{\theta_3}{\theta_4} - \frac{\psi_3}{\psi_4}\right) = 0.$$

This means that the branch lengths should satisfy,

$$t_1 - t_2 = s_1 - s_2\quad \text{or}\quad t_3 - t_4 = s_3 - s_4.$$
Topology of Phylogenetic Mixtures

So to summarize if we mix two 12|34 quartet trees, then we will get a 12|34 tree if the following conditions on the edge lengths are satisfied,

\[t_1 = s_1 \quad \text{and} \quad t_2 = s_2 \] \hspace{1cm} (10)

or

\[t_1 + t_2 = s_1 + s_2 \quad \text{and} \quad t_3 - t_4 = s_3 - s_4 \] \hspace{1cm} (11)

We note that \(\alpha \) gets factored out and doesn’t appear in any of the later equations. This means that if we have branch lengths such that the mixture satisfies the phylogenetic invariants for a single \(\alpha \) then it is satisfied for all \(\alpha \).

Proposition 2: A mixture of two 12|34 quartet trees with branch lengths \(t_1 = s_1 \) and \(t_2 = s_2 \) will have resulting branch lengths \(t_1(= s_1) \) and \(t_2(= s_2) \) respectively.

Fidelity of the mixture, \(\mu_1 \) is given by

\[
\mu_1 = \sqrt{\frac{(\alpha \theta_1 \theta_2 + (1 - \alpha) \psi_1 \psi_2)(\alpha \theta_1 \theta_5 \theta_3 + (1 - \alpha) \psi_1 \psi_5 \psi_3)}{\alpha \theta_2 \theta_5 \theta_3 + (1 - \alpha) \psi_2 \psi_5 \psi_3}}
\]

Substitute \(\psi_1 = \theta_1 \) and \(\psi_2 = \theta_2 \) to get \(\mu_1 = \theta_1 \)

Proposition 3: If we mix two 12|34 trees to get a tree having the same 12|34 topology then the branch length of the mixture can be arbitrarily small even if the corresponding branch lengths in both the original trees are large.

Substitute \(\theta_1 = \psi_1, \theta_3 = \psi_3, \theta_4 = \psi_4, \theta_5 = \psi_2 \) and \(\alpha = 0.5 \). Mixture clearly satisfies the phylogenetic invariants. Fidelity of the mixture, \(\mu_1 \) is given by

\[
\mu_1 = \frac{\theta_1 | \theta_2 + \theta_5 |}{\sqrt{\theta_2 \theta_5}}
\]

So even if \(\theta_1 \) is close to 0, if we choose the factor \(\frac{\theta_2}{\theta_5} \) to be close to 0, \(\mu_1 \) will be approximately 1 which means that the edge length of the mixture in pendant 1 is close to 0.

We will specify the conditions (only a subset of all the conditions) for which the mixture of two 12|34 quartet trees gives a 13|24 quartet tree.
Say that we can find numbers k_i that satisfy
\[
k_1 > k_3 > k_4 > 1 > k_2 > 0
\]
\[
\frac{1 - k_2^2}{k_1} \frac{1 - k_4^2}{k_4} + \frac{1 - k_2^2}{k_2} \frac{1 - k_3^2}{k_3} > 0
\]
\[
\frac{k_1 + k_4}{1 + k_1 k_4} \frac{k_2 + k_3}{1 + k_2 k_3} > 1.
\]

Then for branch lengths t_i and s_i such that $k_i = \exp(-2(t_i - s_i))$ there exists mixing weights α, such that the mixture of the two 12|34 quartets gives a 13|24 quartet.

Reference