Distances, Tree Metrics, and Good Retractions

The goal of phylogenetic reconstruction is to infer an evolutionary tree relating species (or individual genes) from some observed data. Given a set of sequences $S = \{1, \ldots, n\}$ as raw data (genomes, partial genomes, or proteins), a pairwise distance function $d : S^2 \to \mathbb{R}_{\geq 0}$ is calculated by modeling evolutionary processes (mutations, recombinations, selections, duplications, exchanges). Then, this distance d which is definite (1) and symmetric (2) is used to construct a tree defining a tree metric d which satisfies the triangle inequality (3) and 4-point condition (4).

Moulton and Steel [3] focus on this second step of retraction onto a tree metric.

For the set of distances $D(S)$, the set of tree metrics $T(S) \subset D(S)$, and the permutation group Σ_S, a map $\phi : D(S) \to D(S)$ is a retraction onto $T(S)$ if ϕ is continuous and (5) and (6) hold. The map is also good if ϕ is homogeneous (7) and equivariant (8).

Buneman index, refined Buneman index, and associated trees

For any split $\sigma = \{A, B\} \in S(S)$ where $S(S)$ is the set of splits of S, Buneman defined a separation index μ_σ (10) which the authors refine to $\bar{\mu}_\sigma$ (11) via a function
Finding Good Trees from Pairwise Distances

\(\beta_q \) (9) on quartets \(q = \{a, a', b, b'\} \in Q_{\sigma} \subseteq S \) with \(\{a, a'\} \subseteq A \) and \(\{b, b'\} \subseteq B \).

\[
\beta_q = \frac{1}{2} \left(\min\{d_{ab} + d_{a'\nu}, d_{ab} + d_{a'b}\} - (d_{a'a'} + d_{b'b}) \right) \quad (9)
\]

\[
\mu_\sigma = \min_{q} \{\beta_q\} \quad (10)
\]

\[
\bar{\mu}_\sigma = \frac{1}{n-3} \sum_{i=1}^{n-3} \beta_{q_i} \text{ such that } \forall 1 \leq i \leq |Q_\sigma| \quad \beta_{q_i} \leq \beta_{q_j} \quad (11)
\]

The refined Buneman index \(\bar{\mu}_\sigma \) defines the map \(\psi : d \to \sum_{\{\sigma, \bar{\mu}_\sigma > 0\}} \bar{\mu}_\sigma \delta_\sigma \). The authors show that the set \(\{\sigma : \bar{\mu}_\sigma > 0\} \) is pairwise compatible and thus determines a unique S-tree (Corollary 5.1), so \(\psi \) satisfies (5). They also show property (6) because when \(d \) is a tree metric with weights \(w \) on the associated tree, \(\bar{\mu}_\sigma = \mu^+_e = w_e \) if edge \(e \) corresponds to split \(\sigma \) else 0. Finally, they show that the trees from \(\psi \) strictly refine those given by the Buneman index \(\mu_\sigma \).

Proof that the refined Buneman index produces trees

Theorem 5.1 If \(\sigma, \sigma' \in S(S) \) are incompatible, then \(\bar{\mu}_\sigma + \bar{\mu}_{\sigma'} \leq 0 \).

Lemma 5.1 Suppose that \(\sigma = \{A, B\} \in S(S) \) and \(\sigma' = \{A', B'\} \in S(S) \) are incompatible. Then \(|A \cap A'| \times |A \cap B'| \times |B \cap A'| \times |B \cap B'| \geq n - 3 \).

Proof of Lemma 5.1 Define \(w = |A \cap A'|, x = |A \cap B'|, y = |B \cap A'|, \) and \(z = |B \cap B'| \). Then, \(w + x = |A| \) and \(y + z = |B| \). Additionally, \(|A| + |B| = n \), and since the splits are incompatible, \(|A|, |B| \geq 2 \). So, \(wxyz = w(|A| - w)y(|B| - y) \geq (|A| - 1)(|B| - 1) = |A||B| - |A| - |B| + 1 \geq n - 3 \). \(\square \)

Proof of Theorem 5.1 For incompatible splits \(\sigma = \{A, B\} \in S(S) \) and \(\sigma' = \{A', B'\} \in S(S) \), choose quartets \(q = ik|jl \) and \(q' = ij|kl \) such that \(i \in A \cap A', \) \(j \in A \cap B', k \in B \cap A', \) and \(l \in B \cap B' \). By definition, \(\beta_q \leq \frac{1}{2}(d_{ij} + d_{kl} - d_{ik} - d_{jl}) \) and \(\beta_{q'} \leq \frac{1}{2}(d_{ik} + d_{jl} - d_{ij} - d_{kl}) \), so \(\beta_q + \beta_{q'} \leq 0 \). By lemma 5.1, there exist at least \(n - 3 \) choices of \(q \) and \(q' \), which get denoted as \(\bar{q}_i, \bar{q}'_i, 1 \leq i \leq n - 3 \). This makes \(\bar{\mu}_\sigma + \bar{\mu}_{\sigma'} \leq \frac{1}{n-3} \sum_{i=1}^{n-3} (\beta_{\bar{q}_i} + \beta_{\bar{q}'_i}) \leq 0 \). \(\square \)

Further reading

Related findings place bounds on how closely a retraction approximates the closest tree metric [1] and organize several algorithms into a structured family to show properties of the trees resulting from the methods and the computational complexities required for their construction [2].
References

