Some approximation theorems in Math 522

Prelude: Basic facts and formulas for the partial sum operator for Fourier series.

Consider the partial sums of the Fourier series

\[S_n f(x) = \sum_{k=-n}^{n} c_k e^{ikx} \]

where \(c_k = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t)e^{-ikt} \, dt \) are the Fourier coefficients.

We can write

\[S_n f(x) = \sum_{k=-n}^{n} \frac{1}{2\pi} \int_{-\pi}^{\pi} f(y)e^{-iky} \, dy e^{ikx} \]

\[= \frac{1}{2\pi} \int_{-\pi}^{\pi} f(y)D_n(x-y) \, dy \quad \text{where } D_n(t) = \sum_{k=-n}^{n} e^{ikt}. \]

Definition. The convolution of two \(2\pi \) periodic functions \(f, g \) is defined as

\[f \ast g(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(y)g(x-y) \, dy. \]

Note that the convolution of \(2\pi \) periodic continuous functions is well defined and is again a \(2\pi \)-periodic continuous function. and we also have the commutativity property

\[f \ast g(x) = g \ast f(x) \]

To see we first note that for a \(2\pi \) periodic integrable function we have

\[\int_{-\pi}^{\pi} F(t) \, dt = \int_{a-\pi}^{a+\pi} F(t) \, dt \]

for any \(a \). The commutativity property follows if in the definition of \(f \ast g \) we change variables \(t = x-y \) (with \(dt = -dy \)) and get

\[2\pi f \ast g(x) = \int_{-\pi}^{\pi} f(y)g(x-y) \, dy = \int_{-\pi}^{\pi} f(x-t)g(t)(-1) \, dt \]

\[= \int_{-\pi}^{\pi} f(x-t)g(t) \, dt = \int_{-\pi}^{\pi} g(t)f(x-t) \, dt = 2\pi g \ast f(x) \]

where in the last formula we have used the \(2\pi \)-periodicity of \(f \) and \(g \).

Going back to the partial sum of the Fourier series we have

\[S_n f(x) = f \ast D_n(x) = D_n \ast f(x) \quad \text{where } D_n(t) = \sum_{k=-n}^{n} e^{ikt}. \]

Below we will need a more explicit expression for \(D_n \), namely

\[D_n(t) = \frac{\sin(n + \frac{1}{2})t}{\sin \frac{t}{2}} \]
To see this we use $\sum_{k=0}^{n} e^{ikt} = \frac{e^{i(n+1)t} - 1}{e^{it} - 1}$ and $\sum_{k=-n}^{-1} e^{ikt} = \sum_{k=1}^{n} e^{-ikt} = \frac{e^{-i(n+1)t} - 1}{e^{-it} - 1} - 1$ and the second sum can be simplified to $\frac{e^{-int} - 1}{1 - e^{it}}$. Thus $D_n(t) = \frac{e^{i(n+1)t} - e^{-i(n+1)/2}t}{e^{it/2} - e^{-it/2}}$. Multiplying numerator and denominator with $e^{-it/2}$ yields $D_n(t) = e^{i(n+1)t/2} - e^{-i(n+1)/2}t e^{it/2} - e^{-it/2}$ and this yields the displayed formula.

I. Fejér’s theorem

We would like to prove that every continuous function can be approximated by trigonometric polynomials, uniformly on $[-\pi, \pi]$. One may think that, in view of Theorem 8.11 in Rudin’s book, the partial sums $S_n f$ of the Fourier series are good candidates for such an approximation. Unfortunately for merely continuous f, given x, the partial sums $S_n f(x)$ may not converge to $f(x)$ (and then of course $S_n f$ cannot converge uniformly).\footnote{The situation is even worse. Given $x \in [-\pi, \pi]$ one can show that in a certain sense the convergence of $S_n f(x)$ fails for typical f. I hope to return to this point later in the class.}

However instead of $S_n f$ we consider the better behaved arithmetic means (or Cesàro means) of the partial sums. Define

$$\sigma_N f(x) = \frac{1}{N+1} \sum_{n=0}^{N} S_n f(x).$$

The means $\sigma_N f$ are also called the Fejér means of the Fourier series, in tribute to the Hungarian mathematician Leopold Fejér who in 1900 published the following

Theorem. Let f be a continuous 2π-periodic function. Then the means $\sigma_N f$ converge to f uniformly, i.e.

$$\max_{x \in \mathbb{R}} |\sigma_N f(x) - f(x)| \to 0, \text{ as } N \to \infty.$$

If we use the convolution formula $S_n f = D_n * f$ then it follows that

$$\sigma_N f(x) = K_N * f(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} K_N(x - y) f(y) dy = \frac{1}{2\pi} \int_{-\pi}^{\pi} K_N(t) f(x - t) dt$$

where

$$K_N(t) = \frac{1}{N+1} \sum_{n=0}^{N} D_n(t)$$

K_N is called the Nth Fejér kernel.

\footnote{Why is one allowed to write max here for sup?}
We need the following properties of \(K_N \).

Lemma. (a) Explicit formulas for \(K_N \) on \([-\pi, \pi]\) are given by

\[
K_N(x) = \frac{1}{N+1} \frac{1 - \cos(N+1)x}{1 - \cos x} = \frac{1}{N+1} \left(\frac{\sin(\frac{N+1}{2}x)}{\sin \frac{x}{2}} \right)^2,
\]

if \(x \) is not an integer multiple of \(2\pi \). Also \(K_N(0) = N+1 \).

(b) \(K_N(x) \geq 0 \) for all \(x \geq 0 \).

(c) \[
\frac{1}{2\pi} \int_{-\pi}^{\pi} K_N(t)dt = 1.
\]

(d) \[
K_N(x) \leq \frac{1}{N+1} \left(\frac{2}{1 - \cos \delta} \right) \text{ for } 0 < \delta \leq x \leq \pi.
\]

By (c), (d) most of \(K_N \) is concentrated near 0 for large \(N \). Properties (b), (c), (d) are important, the explicit expressions for \(K_N \) much less so.

Proof of the Lemma. We use and rewrite the above explicit formula for the Dirichlet kernel namely

\[
D_n(x) = \frac{\sin(n + \frac{1}{2}x)}{\sin \frac{x}{2}} = \frac{\sin \frac{x}{2} \sin(n + \frac{1}{2})x}{\sin^2 \frac{x}{2}}.
\]

Observe that \(2 \sin a \sin b = \cos(a - b) - \cos(a + b) \) and apply this with \(a = (n + \frac{1}{2})x, b = \frac{x}{2} \) to get

\[
D_n(x) = \frac{\cos nx - \cos(n + 1)x}{2 \sin^2 \frac{x}{2}}.
\]

Thus

\[
K_N(x) = \frac{1}{N+1} \sum_{n=0}^{N} D_n(x)
\]

\[
= \frac{1}{N+1} \sum_{n=0}^{N} \frac{\cos nx - \cos(n + 1)x}{2 \sin^2 \frac{x}{2}}
\]

\[
= \frac{1}{N+1} \frac{1 - \cos(N + 1)x}{2 \sin^2 \frac{x}{2}}
\]

Now recall the formula \(\cos 2a = \cos^2 a - \sin^2 a = 1 - 2 \sin^2 a \). If we use this for \(a = x/2 \) we get the first claimed formula for \(K_N \), and if we use it for \(a = (N + 1)\frac{x}{2} \) then we get the second claimed formula. Compute the limit as \(x \to 0 \), this yields \(K_N(0) = N+1 \).

Property (d) is immediate from the first explicit formula. Estimate \(|1 - \cos(N + 1)x| \leq 2 \) and \((1 - \cos x) \geq 1 - \cos \delta \) for \(\delta \leq x \leq \pi \) and
also use that the cosine is an even function to get the same estimate for
\(-\pi \leq x \leq -\delta\).

The nonnegativity of \(K_N\) is also clear from the explicit formulas.

The property (c) follows from \(\frac{1}{2\pi} \int_{-\pi}^{\pi} D_n(t)dt = 1\) (and taking the arithmetic mean of 1s gives a 1). \(\blacksquare\)

Proof of Fejér’s theorem. Given \(\varepsilon > 0\) we have to show that there is
\(M = M(\varepsilon)\) so that for all \(N \geq M\),
\[
|\sigma_N f(x) - f(x)| \leq \varepsilon \quad \text{for all } x.
\]

Now we write
\[
\sigma_N f(x) - f(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} K_N(t)f(x-t)dt - f(x)
\]
\[
= \frac{1}{2\pi} \int_{-\pi}^{\pi} K_N(t)\left[f(x-t) - f(x)\right]dt;
\]
here we have used property (c).

\(f\) is continuous and therefore *uniformly continuous* on any compact interval. Since \(f\) is also \(2\pi\)-periodic, \(f\) is uniformly continuous on \(\mathbb{R}\). This means that there is a \(\delta > 0\) such that
\[
|f(x-t) - f(x)| \leq \frac{\varepsilon}{4} \quad \text{for } |t| \leq \delta, \text{ and all } x \in \mathbb{R}.
\]

We split the integral into two parts:
\[
\frac{1}{2\pi} \int_{-\pi}^{\pi} K_N(t)\left[f(x-t) - f(x)\right]dt = I_N(x) + II_N(x)
\]
where
\[
I_N(x) = \frac{1}{2\pi} \int_{-\delta}^{\delta} K_N(t)\left[f(x-t) - f(x)\right]dt,
\]
\[
II_N(x) = \frac{1}{2\pi} \int_{[-\pi,\pi]\setminus[-\delta,\delta]} K_N(t)\left[f(x-t) - f(x)\right]dt.
\]

We give an estimate of \(I_N\) which holds for all \(N\). Namely
\[
|I_N(x)| \leq \frac{1}{2\pi} \int_{-\delta}^{\delta} |K_N(t)||f(x-t) - f(x)|dt
\]
\[
\leq \frac{1}{2\pi} \int_{-\delta}^{\delta} |K_N(t)|\frac{\varepsilon}{4}dt
\]
\[
\leq \frac{1}{2\pi} \int_{-\pi}^{\pi} |K_N(t)|\frac{\varepsilon}{4}dt = \frac{\varepsilon}{4},
\]
by (b) and (c). Since this estimate holds for all \(N\) we may now choose \(N\) large to estimate the second term \(II_N(x)\).
We use property (d) to estimate the integral for \(x \in [\delta, \pi] \cup [-\pi, -\delta] \). We crudely bound \(|f(x-t) - f(x)| \leq |f(x-t)| + |f(x)| \leq 2 \max |f| \). Thus

\[
|II_N(x)| \leq 2 \max |f| \frac{1}{2\pi} \int_{[-\pi, \pi] \setminus [-\delta, \delta]} \frac{1}{N+1} \left(\frac{2}{1 - \cos \delta} \right) dt
\]

As \(\frac{1}{N+1} \to 0 \) as \(N \to \infty \) we may choose \(N_0 \) so that for \(N \geq N_0 \) the quantity \(\frac{1}{N+1} \left(\frac{4 \max |f|}{1 - \cos \delta} \right) \) is less than \(\varepsilon/4 \). Thus for \(N \geq N_0 \) both quantities \(|I_N(x)|\) and \(|II_N(x)|\) are \(\leq \varepsilon/4 \) for all \(x \) and thus we conclude that

\[
\max_{x \in \mathbb{R}} |\sigma_N f(x) - f(x)| \leq \varepsilon/2 \text{ for } N \geq N_0.
\]

\(\square \)

An application for the partial sum operator

Theorem. Let \(f \) be a continuous \(2\pi \)-periodic function. Then

\[
\lim_{n \to \infty} \left(\int_{-\pi}^{\pi} |S_n f(x) - f(x)|^2 dx \right)^{1/2} = 0
\]

i.e., \(S_n f \) converges to \(f \) in the \(L^2 \)-norm in the space of square-integrable functions. \(^3\)

Proof. By Theorem 8.11 in Rudin (which is linear algebra) we have \(S_N t_M = t_M \) for every trigonometric polynomial \(t_M(x) = \sum_{k=-M}^{M} \gamma_k e^{ikt} \) provided that \(N \geq M \).

Now let \(\varepsilon > 0 \). By Fejér’s theorem we can find such a trigonometric polynomial \(t_M \) (of some degree \(M \) depending on \(\varepsilon \)) so that \(\max |f(x) - t_M(x)| \leq \varepsilon \). Then for \(n > M \) we have \(S_n f - f = S_n(f - t_M) - (f - t_M) \).

We also have

\[
||S_N(f - t_M)||^2 \leq ||f - t_M||^2
\]

this is just (76) in 8.13 in Rudin. Thus

\[
||S_n f - f|| \leq ||S_n(f - t_M)|| + ||f - t_M|| \leq 2 ||f - t_M||.
\]

But we have

\[
\left(\frac{1}{2\pi} \int_{-\pi}^{\pi} |f(x) - t_M(x)|^2 dx \right)^{1/2} \leq \max |f - t_M| < \frac{\varepsilon}{2}
\]

and we are done. \(\square \)

\(^3\)Recall: This norm is given by \(||f|| = (\frac{1}{2\pi} \int_{-\pi}^{\pi} |f(x)|^2 dx)^{1/2} \) and is derived from the scalar product \(\langle f, g \rangle = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) \overline{g(x)} dx \).
II. The Weierstrass approximation theorem

Theorem. Let \(f \) be a continuous function on an interval \([a, b]\). Then \(f \) can be uniformly approximated by polynomials on \([a, b]\).

In other words: Given \(\varepsilon > 0 \) there exists a polynomial \(P \) (depending on \(\varepsilon \)) so that
\[
\max_{x \in [a, b]} |f(x) - P(x)| \leq \varepsilon.
\]

Here \(f \) may be complex valued and then a polynomial is a function of the form \(\sum_{k=0}^{N} a_k x^k \) with complex coefficients \(a_k \) (considered for \(x \in [a, b] \)). If \(f \) is real-valued, the polynomial can be chosen real-valued.

A short proof relies on Fejér’s theorem and approximation of trigonometric functions by their Taylor polynomials.

Proof. We first consider the special case \([a, b] = [-\frac{\pi}{2}, \frac{\pi}{2}]\).

Extend the function \(f \) to a continuous function \(F \) on \([-\pi, \pi]\) so that \(F(x) = f(x) \) on \([-\frac{\pi}{2}, \frac{\pi}{2}]\) and \(F(-\pi) = F(\pi) = 0 \). Then we can extend \(F \) to a continuous \(2\pi \) periodic function on \(\mathbb{R} \).

Let \(\varepsilon > 0 \). By Fejér’s theorem we can find a trigonometric polynomial \(T(x) = a_0 + \sum_{k=1}^{N} [a_k \cos kx + b_k \sin kx] \) so that
\[
\max_{x \in \mathbb{R}} |F(x) - T(x)| < \varepsilon/2.
\]

Now the Taylor series for \(\cos \) and \(\sin \) converge uniformly on every compact interval. Thus we can find a polynomial \(P \) so that
\[
\max_{x \in [-\pi, \pi]} |T(x) - P(x)| < \varepsilon/2.
\]

Combining the two estimates (and using that \(f = F \) on \([-\frac{\pi}{2}, \frac{\pi}{2}]\)) yields
\[
\max_{|x| \leq \pi/2} |f(x) - P(x)| = \max_{|x| \leq \pi/2} |F(x) - P(x)| < \varepsilon.
\]

Arbitrary compact intervals. Consider an interval \([a, b]\) and let \(g \in C([a, b]) \). We wish to approximate \(g \) by polynomials on \([a, b]\). Let \(\ell(t) = Ct + D \) so that \(\ell(-\pi/2) = a \) and \(\ell(\pi/2) = b \) (you can compute that \(C = \frac{b-a}{\pi}, D = \frac{b+a}{2} \)).

The inverse of \(\ell \) is given by \(\ell^{-1}(x) = \frac{x}{b-a}(x - \frac{b+a}{2}) \).

The function \(g \circ \ell \) is in \(C([-\frac{\pi}{2}, \frac{\pi}{2}]) \). Thus by what we have already done, there exists a polynomial \(P \) such that
\[
\max_{t \in [-\frac{\pi}{2}, \frac{\pi}{2}]} |g(\ell(t)) - P(t)| < \varepsilon
\]
and therefore if we set \(Q(x) = P(\ell^{-1}(x)) = P(\frac{x}{b-a}(x - \frac{b+a}{2})) \) then \(Q \) is a polynomial and we have
\[
\max_{x \in [a, b]} |g(x) - Q(x)| < \varepsilon.
\]
III. Approximations of the identity

In this section we leave the subject of polynomial approximation and try to approximate continuous functions vanishing at $\pm \infty$ by smooth functions.

In a previous homework problem a C^∞-function ϕ was constructed with the property that ϕ is positive on $(-1, 1)$ and $\phi(t) = 0$ for $|t| \geq 1$. If we divide by a suitable constant we may achieve and assume

$$\int_{-1}^{1} \phi(t) dt = 1$$

and we may also write $\int_{-\infty}^{\infty} \phi(t) dt = 1$ since ϕ vanishes off $[-1, 1]$.

Now for $s > 0$ define

$$\phi_s(t) = \frac{1}{s} \phi\left(\frac{t}{s}\right).$$

Then we also have $\int \phi_s(t) dt = 1$, by the substitution $u = t/s$. Graph the function ϕ_s for small values of the parameter s.

Definition. For continuous $f \in C(\mathbb{R})$ we define

$$A_s f(x) = \int_{-\infty}^{\infty} \phi_s(x-t) f(t) dt.$$

We shall be interested in the behavior of $A_s f$ for $s \to 0$. Note that the t-integral extends over a compact interval depending on x, s. The integral is also called a convolution of the functions ϕ_s and f.

Exercise: Let $f \in C(\mathbb{R})$. Show that for every $s > 0$ the function $x \mapsto A_s f$ is a C^∞ function on $(-\infty, \infty)$. If $\lim_{|x| \to \infty} |f(x)| = 0$ then show also that $\lim_{|x| \to \infty} |A_s f(x)| = 0$.

Theorem. (a) Let $f \in C(\mathbb{R})$ and let J be any compact interval. Then, as $s \to 0$, $A_s f$ converges to f uniformly on J.

(b) Let f be as in (a) and assume in addition that $\lim_{|x| \to \infty} |f(x)| = 0$. Then $A_s f$ converges to f uniformly on \mathbb{R}.

Proof. We shall only prove part (b). As an exercise you can prove part (a) in the same way, or alternatively, deduce it from part (b).

One may change variables to write

$$A_s f(x) = \int_{-\infty}^{\infty} \phi_s(t) f(x-t) dt.$$

\[\text{The convolution of two functions defined on } \mathbb{R} \text{ is given by } f \ast g(x) = \int_{-\infty}^{\infty} f(y) g(x-y) dy \text{ whenever this makes sense; again one checks } f \ast g = g \ast f. \text{ We will not go into details here.}\]
Since \(\int \phi_s(t)dt = 1 \) we see that
\[
A_s f(x) - f(x) = \int_{-\infty}^{\infty} \phi_s(t)[f(x-t) - f(x)]dt.
\]
Note that, since \(\phi_s(t) = 0 \) for \(|t| > s \), the \(t \) integral is really an integral over \([-s, s]\).

The assumptions that \(f \) is continuous and that \(\lim_{|x|\to\infty} |f(x)| = 0 \) imply that \(f \) is uniformly continuous on \(\mathbb{R} \) (prove this!). Thus given \(\varepsilon > 0 \) there is a \(\delta > 0 \) so that \(|f(x-t) - f(x)| < \varepsilon/2 \) for all \(t \) with \(|t| \leq \delta \) and for all \(x \in \mathbb{R} \). If \(0 < s < \delta \) we have by the nonnegativity of \(\phi_s \)
\[
|A_s f(x) - f(x)| \leq \int_{-s}^{s} \phi_s(t)|f(x-t) - f(x)|dt \leq \frac{\varepsilon}{2} \int_{-s}^{s} \phi_s(t)dt = \frac{\varepsilon}{2}
\]
for all \(x \in \mathbb{R} \).

\[\Box\]

Terminology: The linear transformations (aka as linear operators) \(A_s \) are called approximations of the identity. The identity operator \(\text{Id} \) is simply given by \(\text{Id}(f) = f \), and the above Theorem says that the operators \(A_s \) approximate in a certain sense the identity operator as \(s \to 0 \).

One can use other approximations of the identity defined like the one above where \(\phi \) is replaced by a not necessarily compactly supported function. If one drops the compact support the proofs get slightly more involved.

Other types of approximations of the identity (with a parameter \(n \to \infty \)) are given by the families of linear operators \(L_n \) in §IV below and \(B_n \) in §V below. For each \(f \) these linear operators will produce families of polynomials depending on \(f \).

IV. The Landau polynomials:
A second proof of Weierstrass’ theorem

Let \(f \) be continuous on the interval \([-1/2, 1/2]\). Define
\[
Q_n(x) = c_n(1 - x^2)^n
\]
where \(c_n = (\int_{-1}^{1}(1 - s^2)^n ds)^{-1} \) so that \(\int_{-1}^{1} Q_n(t)dt = 1 \). The sequence of *Landau polynomials* associated to \(f \) is defined by
\[
L_n f(x) = \int_{-1/2}^{1/2} f(t)Q_n(t-x)dt.
\]
Verify that \(L_n f \) is a polynomial of degree at most \(2n \).

By a change of variables one can use the following theorem to prove the Weierstrass approximation theorem on any compact interval \([a, b]\).

Theorem. Let \(\gamma > 0 \) and let \(I_\gamma = [-1/2 + \gamma, 1/2 - \gamma] \). The sequence \(L_n f \) converges to \(f \), uniformly on the interval \(I_\gamma \), i.e.
\[
\max_{x \in I_\gamma} |L_n f(x) - f(x)| \to 0, \text{ as } n \to \infty.
\]
Proof. We first need some information about the size of the polynomials Q_n. Consider $c_n^{-1} = \int_{-1}^{1}(1-s^2)^n ds$. We use the inequality

$$(1-x^2)^n \geq 1 - nx^2, \text{ for } 0 \leq x \leq 1.$$

To see this let $h(x) = (1-x^2)^n - 1 + nx^2$. The derivative of h is $h'(x) = -2nx(n-1) + 2nx = 2nx(1-(1-x^2)^{n-1})$ which is positive for $x \in [0,1]$. Thus h is increasing on $[0,1]$ and since $h(0) = 0$ we see that $h(x) \geq 0$ for $x \in [0,1]$. Since h is even we have $h(x) \geq 0$ for $x \in [-1,1]$. We use the last displayed inequality in the integral defining the constant c_n and get

$$c_n^{-1} = \int_{-1}^{1}(1-x^2)^n dx = 2 \int_{0}^{1}(1-x^2)^n dx \geq 2 \int_{0}^{n^{-1/2}}(1-x^2)^n dx \geq 2 \int_{0}^{n^{-1/2}}(1-nx^2)dx > n^{-1/2}$$

and from this we obtain

$$(*) \quad Q_n(x) \leq \sqrt{n}(1-x^2)^n.$$

Given $\varepsilon > 0$ the goal is to show that $\max_{x \in I, |L_n f(x) - f(x)| < \varepsilon}$ for sufficiently large n.

Let $\varepsilon > 0$. Since f is uniformly continuous on $[-1/2,1/2]$ we can find $\delta > 0$ so that $\delta < \gamma$ and so that for all $x \in I$ and all t with $|t| \leq \delta$ we have that $|f(x+t) - f(x)| < \varepsilon/4$.

Write (with a change of variables)

$$\int_{-1/2}^{1/2} f(s)Q_n(s-x)ds = \int_{-\frac{1}{2}+x}^{\frac{1}{2}+x} f(t+x)Q_n(t)dt$$

Since $x \in I = [-\frac{1}{2} + \gamma, 1/2 - \gamma]$ and since $\delta < \gamma$ we have $-1/2 + x < -\delta < \delta < 1/2 + x$. We may thus split the integral as

$$\int_{-1/2+x}^{-\delta} + \int_{-\delta}^{\delta} + \int_{\delta}^{1/2+x} f(t+x)Q_n(t)dt.$$

The idea is that the first and the third term will be small for large n. We modify the middle integral further to write

$$\int_{-\delta}^{\delta} f(t+x)Q_n(t)dt = \int_{-\delta}^{\delta} [f(t+x) - f(x)]Q_n(t)dt + f(x) \int_{-\delta}^{\delta} Q_n(t)dt$$

5The proof here is essentially the same as the proof of Weierstrass’ theorem in Theorem 7.26 of W. Rudin’s book.
and finally (using \(\int_{-1}^{1} Q_n(t) dt = 1 \))

\[f(x) \int_{-\delta}^{\delta} Q_n(t) dt = f(x) - f(x) \int_{-1}^{-\delta} Q_N(t) dt - f(x) \int_{\delta}^{1} Q_N(t) dt. \]

Putting it all together we get

\[L_n f(x) - f(x) = I_n(x) + II_n(x) + III_n(x) \]

where

\[I_n(x) = \int_{-\delta}^{\delta} [f(t + x) - f(x)] Q_n(t) dt \]

\[II_n(x) = \int_{-1/2}^{-1/2 + x} f(t + x) Q_n(t) dt + \int_{\delta}^{1/2 + x} f(t + x) Q_n(t) dt \]

\[III_n(x) = -f(x) \int_{-\delta}^{\delta} Q_N(t) dt - f(x) \int_{\delta}^{1} Q_N(t) dt. \]

Estimate

\[|I_n(x)| = \int_{-\delta}^{\delta} |f(t + x) - f(x)| Q_n(t) dt \leq \frac{\varepsilon}{4} \int_{-\delta}^{\delta} Q_N(t) dt \leq \frac{\varepsilon}{4} \int_{-1}^{1} Q_N(t) dt = \frac{\varepsilon}{4}; \]

this estimate is true for all \(n \).

Now let \(M = \max_{x \in [-1/2, 1/2]} |f(x)| \). Then by our estimate (*) for \(Q_n \) we see that

\[|II_n(x)| + |III_n(x)| \leq 2M \max_{t \in [-1, -\delta] \cup [\delta, 1]} Q_n(t) \leq 2M \sqrt{n} (1 - \delta^2)^n \]

and since \(2M \sqrt{n} (1 - \delta^2)^n \) tends to 0 as \(n \to \infty \) we see that there is \(N \) so that for \(n \geq N \) we have \(\max_{x \in I_n} |II_n(x) + III_n(x)| < \varepsilon/2 \) for \(n \geq N \). If we combine this with the estimate for \(I_n(x) \) we see that \(|L_n f(x) - f(x)| < \varepsilon \) for \(n > N \) and all \(x \in I_n \).

\[\Box \]

V. The Bernstein polynomials:

A third proof of Weierstrass’ theorem

Here we consider the interval \([0, 1]\). For \(n = 1, 2, \ldots \) define

\[B_n f(t) = \sum_{k=0}^{n} f\left(\frac{k}{n} \right) \binom{n}{k} t^k (1-t)^{n-k}, \]

the sequence of Bernstein polynomials associated to \(f \). Here \(\binom{n}{k} = \frac{n!}{k!(n-k)!} \), the binomial coefficients. For each \(n, B_n f \) is a polynomial of degree at most \(n \).
Theorem. If \(f \in C([0,1]) \) then the polynomials \(B_n f \) converge to \(f \) uniformly on \([0,1]\).

For the proof we will use the following auxiliary Lemma.

\[
\sum_{0 \leq k \leq n} \left(\frac{k}{n} - t \right)^2 \binom{n}{k} t^k (1-t)^{n-k} \leq \frac{1}{4n}.
\]

We shall first prove the Theorem based on the Lemma and then give a proof of the Lemma. There is also a probabilistic interpretation of the Lemma which is appended below.

Proof of the theorem. By the binomial theorem

\[
1 = (t + (1-t))^n = \sum_{k=0}^{n} \binom{n}{k} t^k (1-t)^{n-k}
\]

and thus we may write

\[
B_n f(t) - f(t) = \sum_{k=0}^{n} f\left(\frac{k}{n} \right) \binom{n}{k} t^k (1-t)^{n-k} - f(t) \cdot 1
\]

* = \[
= \sum_{k=0}^{n} \left[f\left(\frac{k}{n} \right) - f(t) \right] \binom{n}{k} t^k (1-t)^{n-k}
\]

Given \(\varepsilon > 0 \) find \(\delta > 0 \) so that \(|f(t + h) - f(t)| \leq \varepsilon/4 \) if \(t, t + h \in [0,1] \) and \(|h| < \delta \). For the terms with \(|\frac{k}{n} - t| \leq \delta \) we will exploit the smallness of \(f\left(\frac{k}{n} \right) - f(t) \) and for the terms with \(|\frac{k}{n} - t| > \delta \) we will exploit the smallness of the term in the Lemma, for large \(n \). We thus split \(B_n f(t) - f(t) = I_n(t) + II_n(t) \) where

\[
I_n(t) = \sum_{0 \leq k \leq n} \left[f\left(\frac{k}{n} \right) - f(t) \right] \binom{n}{k} t^k (1-t)^{n-k}
\]

\[
II_n(t) = \sum_{0 \leq k \leq n} \left[f\left(\frac{k}{n} \right) - f(t) \right] \binom{n}{k} t^k (1-t)^{n-k}
\]

the decomposition depends of course on \(\delta \) but \(\delta \) does not depend on \(n \). We show that \(|I_n(t)| \leq \varepsilon/4 \) for all \(n = 2,3,\ldots \).

Indeed, since \(|f\left(\frac{k}{n} \right) - f(t)| \leq \varepsilon/4 \) for \(|\frac{k}{n} - t| \leq \delta \) we compute

\[
|I_n(t)| \leq \sum_{0 \leq k \leq n} |f\left(\frac{k}{n} \right) - f(t)| \binom{n}{k} t^k (1-t)^{n-k}
\]

\[
\leq \frac{\varepsilon}{4} \sum_{0 \leq k \leq n} \binom{n}{k} t^k (1-t)^{n-k} = \frac{\varepsilon}{4}
\]
where we have used again the binomial theorem.

Concerning II_n we observe that $1 \leq \delta^{-2} \left(\frac{k}{n} - t \right)^2$ for $|\frac{k}{n} - t| \geq \delta$ and estimate $|f\left(\frac{k}{n}\right) - f(t)| \leq 2 \max |f|$. Thus

$$II_n(t) \leq \sum_{0 \leq k \leq n} \delta^{-2} \left(\frac{k}{n} - t \right)^2 |f\left(\frac{k}{n}\right) - f(t)| \binom{n}{k} t^k (1 - t)^{n-k}$$

$$\leq \delta^{-2} 2 \max |f| \sum_{0 \leq k \leq n} \left(\frac{k}{n} - t \right)^2 \binom{n}{k} t^k (1 - t)^{n-k}$$

By the Lemma $|II_n(t)| \leq (4n)^{-1} \delta^{-2} 2 \max |f|$ and for sufficiently large n this is $\leq \varepsilon/2$ and we are done.

\[\square\]

Proof of the Lemma. We set $\psi_0(t) = 1$, $\psi_1(t) = t$ and $\psi_2(t) = t^2$, etc. Then we can explicitly compute the polynomials $B_n \psi_0, B_n \psi_1, B_n \psi_2$ for $n = 1, 2, \ldots$.

First, by the binomial theorem (as used before)

$$B_n \psi_0(t) = \sum_{k=0}^{n} \binom{n}{k} t^k (1 - t)^{n-k} = 1$$

thus $B_n \psi_0 = \psi_0$. Next for $n \geq 1$

$$B_n \psi_1(t) = \sum_{k=0}^{n} \frac{k}{n} \binom{n}{k} t^k (1 - t)^{n-k}$$

$$= \sum_{k=1}^{n} \frac{(n-1)!}{(k-1)! (n-k)!} t^k (1 - t)^{n-k}$$

$$= t \sum_{k=1}^{n} \binom{n-1}{k-1} t^{k-1} (1 - t)^{n-1-(k-1)}$$

$$= t \sum_{j=0}^{n-1} \binom{n-1}{j} t^j (1 - t)^{n-1-j} = t$$

which means $B_n \psi_1 = \psi_1$ for $n \geq 1$.

To compute \(B_n \psi_2 \) we observe that
\[
B_1 \psi_2(t) = \psi_2(0)(1 - t) + \psi_2(1)t = \psi_1(t)
\]
and, for \(n \geq 2 \)
\[
B_n \psi_2(t) = \sum_{k=0}^{n} \frac{k^2}{n^2} \binom{n}{k} t^k (1 - t)^{n-k}
\]
\[
= \frac{1}{n} \left(t^2(n-1) \sum_{k=2}^{n} \frac{n-2}{k-2} t^{k-2} (1 - t)^{n-2-(k-2)}
+ t \sum_{k=1}^{n} \frac{n-1}{k-1} t^{k-1} (1 - t)^{n-1-(k-1)} \right)
\]
\[
= \frac{(n-1)t^2 + t}{n} = t^2 + \frac{t - t^2}{n}.
\]
We summarize: For \(n \geq 2 \) we have
\[
B_n \psi_0 = \psi_0, \quad B_n \psi_1 = \psi_1, \quad B_n \psi_2 = \psi_2 + \frac{1}{n} (\psi_1 - \psi_2).
\]

To prove the assertion in the Lemma lets multiply out
\[
\left(\frac{k}{n} - t \right)^2 = \left(\frac{k}{n} \right)^2 - 2t \frac{k}{n} + t^2
\]
and use that the transformation \(f \mapsto B_n f(t) \) is linear (i.e we have \(B_n [c_1 f_1 + c_2 f_2](x) = c_1 B_n f_1(x) + c_2 B_n f_2(x) \) for functions \(f_1, f_2 \) and scalars \(c_1, c_2 \)). We compute, for \(n \geq 2 \)
\[
\sum_{0 \leq k \leq n} \left(\frac{k}{n} - t \right)^2 \binom{n}{k} t^k (1 - t)^{n-k}
\]
\[
= B_n \psi_2(t) - 2tB_n \psi_1(t) + t^2
\]
\[
= t^2 + \frac{t - t^2}{n} - 2t \cdot t + t^2 = \frac{t - t^2}{n}
\]
and since \(\max_{0 \leq t \leq 1} t - t^2 = 1/4 \) we get the assertion of the Lemma.

Remark. Let’s consider an arbitrary compact interval \([a, b]\) and let \(f \in C([a, b]) \). Then the polynomials
\[
P_n f(x) = \sum_{k=0}^{n} f\left(a + \frac{k}{n}(b - a)\right) \binom{n}{k} \frac{(x - a)^k (b - x)^{n-k}}{(b - a)^n}
\]
converge to \(f \) uniformly on \([a, b]\).

Using a change of variable derive this statement from the above theorem.
Addendum:

Probabilistic interpretation of the Bernstein polynomials. You might have seen the expressions $B_n f(t)$ in a course on probability. In what follows the parameter t is a parameter for a probability (between 0 and 1).

Let’s consider a series of trials of an experiment. Each trial may is supposed to have two possible outcomes (either success or failure). Each integer in $X_n := \{1, \ldots, n\}$ represents a trial; we label the jth trial as T_j. Let $t \in [0, 1]$ be fixed. In each trial the probability of success is assumed to be t, and the probability of failure is then $(1 - t)$. The trials are supposed to be independent.

Let A be a specific subset of $\{1, \ldots, n\}$ which is of cardinality k, i.e. A is of the form $\{j_1, j_2, \ldots, j_k\}$ for mutually different integers j_1, \ldots, j_k; if $k = 0$ then $A = \emptyset$. Then the event Ω_A that for each $j \in A$ the trial T_j results in a success and for each $j \in X_n \setminus A$ the trial T_j results in a failure has probability $t^k (1 - t)^{n - k}$. There are exactly $\binom{n}{k}$ subsets A of X_n which have cardinality k and they represent mutually exclusive (aka disjoint) events. Let Ω_k be the event that the n trials result in k successes, then the probability of Ω_k is

$$\mathbb{P}(\Omega_k) = \binom{n}{k} t^k (1 - t)^{n - k}.$$

The probabilities of the mutually exclusive events Ω_k add up to 1;

$$\sum_{k=0}^{n} \mathbb{P}(\Omega_k) = 1;$$

(cf. the binomial theorem).

Let now X be the number of successes in a series of n trials (X is a “random variable” which depends on the outcome of each trial). The event Ω_k is just the event that X assumes the value k (one writes $\mathbb{P}(\Omega_k)$ also as $\mathbb{P}(X = k)$). The random variable X/n is the ratio of successes and total number of trials, and it takes values in $[0, 1]$ (more precisely in $\{0, \frac{1}{n}, \ldots, \frac{n}{n}\}$).

The expected value of X/n is by definition

$$\mathbb{E}[X/n] = \sum_{k=0}^{n} k \cdot \mathbb{P}(\Omega_k)$$

and in the proof of the Lemma we computed it to

$$\mathbb{E}[X/n] = \sum_{k=0}^{n} k \binom{n}{k} t^k (1 - t)^{n - k} = B_n \psi_1(t) = t.$$

Generally, if f is a function of t, the expected value of $f(X/n)$ is equal to

$$\mathbb{E}[f(X/n)] = \sum_{k=0}^{n} f\left(\frac{k}{n}\right) \mathbb{P}(\Omega_k) = \sum_{k=0}^{n} f\left(\frac{k}{n}\right) \binom{n}{k} t^k (1 - t)^{n - k};$$

that gives the probabilistic interpretation of the Bernstein polynomials evaluated at t;

$$B_n f(t) = \mathbb{E}[f(X/n)].$$

The Variance of X/n is given by

$$\mathbb{E}[(X/n - \mathbb{E}[X/n])^2] = \sum_{k=0}^{n} \binom{n}{k} t^k (1-t)^{n-k} = \frac{t - t^2}{n},$$

as computed in the proof of the lemma.

Let $\delta > 0$ be a small number. The probability that the number of successes deviates from the expected value tn by more than δn is given by

$$\sum_{0 \leq k \leq n} \mathbb{P}(\Omega_k) = \sum_{0 \leq k \leq n} \binom{n}{k} t^k (1-t)^{n-k}.$$

The smallness of this quantity (uniformly in t) played an important role in the Bernstein proof of Weierstrass’ theorem. It was estimated by

$$\mathbb{E} \left[\frac{(X - \mathbb{E}[X])^2}{\delta n} \right] = \delta^{-2} \sum_{k=0}^{n} \binom{n}{k} t^k (1-t)^{n-k} = \frac{t - t^2}{\delta^2 n}.$$

Thus, by the statement of the Lemma, the event that the number of successes deviates from the expected value tn by more than δn has probability no more than $(4\delta^2 n)^{-1}$.