Mathematics 522

Homework assignment No.2.

Due Friday, September 27.

1. For complex numbers \(z \) define

\[
\sinh z = \sum_{k=0}^{\infty} \frac{z^{2k+1}}{(2k+1)!}
\]

\[
\cosh z = \sum_{\ell=0}^{\infty} \frac{z^{2\ell}}{(2\ell)!}
\]

(i) Show that these series converge for all \(z \) and thus the functions \(\sinh \) and \(\cosh \) are well defined.

(ii) what is the relation between \(\exp, \cosh, \sinh \)?

If we define \(\cos z = \cosh(iz) \), \(\sin z = \frac{1}{i} \sinh(iz) \) what is the relation between \(\exp, \cos, \sin \)?

(iii) Show that

\[
\sinh(z+w) = \sinh z \cosh w + \cosh z \sinh w
\]

\[
\cosh(z+w) = \cosh z \cosh w + \sinh z \sinh w
\]

Derive similar formulas for \(\sin(z+w), \cos(z+w) \).

2.-3.-4.-5. Problems 4,5,6 and 9 on p.165-166 in Rudin’s book.

6. Suppose the real-valued functions \(f_n \) and \(g_n \) are defined on an interval \(E \) (or more generally on a set \(E \)).

Suppose that

(a) the partial sums of the series \(\sum f_n(x) \) are uniformly bounded on \(E \),

(b) \(g_n \to 0 \) uniformly on \(E \)

(c) \(g_k(x) \geq g_{k+1}(x) \) for all \(k = 1,2,\ldots \) and all \(x \in E \).

Prove that \(\sum f_n g_n \) converges uniformly on \(E \)

7. Prove that \(\sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+1}}{2k+1} \) converges uniformly on \([-1,1]\) and evaluate the sum. What do you get for \(x = 1 \)?

8. Evaluate \(\sum_{k=1}^{\infty} k^2 x^{2k+1} \) for \(|x| < 1 \).