
Probabilities and Random Variables

This is an elementary overview of the basic concepts of probability theory.

I. The Probability Space

The purpose of probability theory is to model random experiments so that we
can draw inferences about them. The fundamental mathematical object is a triple
(Ω,F , P ) called the probability space. A probability space is needed for each exper-
iment or collection of experiments that we wish to describe mathematically. The
ingredients of a probability space are a sample space Ω, a collection F of events,
and a probability measure P . Let us examine each of these in turn.

(a) The sample space Ω. This is the set of all the possible outcomes of the
experiment. Elements of Ω are called sample points and typically denoted by ω.
These examples should clarify its meaning:

Example 1. If the experiment is a roll of a six-sided die, then the natural sample
space is Ω = {1, 2, 3, 4, 5, 6}. Each sample point is a natural number between 1 and
6.

Example 2. Suppose the experiment consists of tossing a coin three times. Let us
write 0 for heads and 1 for tails. The sample space must contain all the possible
outcomes of the 3 successive tosses, in other words, all triples of 0’s and 1’s:

Ω = {0, 1}3

= {0, 1} × {0, 1} × {0, 1}

= {(x1, x2, x3) : xi ∈ {0, 1} for i = 1, 2, 3}

= {(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1)}.

The four formulas are examples of different ways of writing down the set Ω. A
sample point ω = (0, 1, 0) means that the first and third tosses come out heads (0)
and the second toss comes out tails (1).

Example 3. Suppose the experiment consists of tossing a coin infinitely many times.
Even though such an experiment cannot be physically arranged, it is of central
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importance to the theory to be able to handle idealized situations of this kind. A
sample point ω is now an infinite sequence

ω = (x1, x2, x3, . . . , xi, . . . ) = (xi)
∞

i=1

whose terms xi are each 0 or 1. The interpretation is that xi = 0 (1) if the ith
toss came out heads (tails). In this model the infinite sequence of coin tosses is
regarded as a single experiment, although we may choose to observe the individual
tosses one at a time. (If you need a mental picture, think of the goddess of chance
simultaneously tossing all infinitely many coins.) The sample space Ω is the space
of all infinite sequences of 0’s and 1’s:

Ω = {ω = (xi)
∞

i=1 : each xi is either 0 or 1 }

= {0, 1}N.

In the last formula N = {1, 2, 3, . . .} stands for the set of natural numbers, and the
notation {0, 1}N stands for the infinite product set

{0, 1}N = {0, 1} × {0, 1} × {0, 1} × · · · × {0, 1} × · · · .

Example 4. If our experiment consists in observing the number of customers that
arrive at a service desk during a fixed time period, the sample space should be the
set of nonnegative integers: Ω = Z+ = {0, 1, 2, 3, . . .}.

Example 5. If the experiment consists in observing the lifetime of a light bulb,
then a natural sample space would be the set of nonnegative real numbers: Ω
= R+ = [0,∞).

These sample spaces are mathematically very different. Examples 1 and 2 have
finite sample spaces, while the rest are infinite. The sample space in Example 4 is
countably infinite, which means that its elements can be arranged in a sequence.
Finite and countably infinite spaces are also called discrete. Probability theory
on discrete sample spaces requires no advanced mathematics beyond calculus and
linear algebra, and that is the main focus of this course. Occasionally we have
to talk about uncountable spaces such as the sequence space of Example 3 or the
familiar real line of Example 5. A precise treatment of probability models on these
spaces requires measure theory.
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(b) The collection of events, F . Events are simply subsets of the sample space.
They can often be described both in words and in set-theoretic notation. Events
are typically denoted by upper case letters: A, B, C, etc. Here are some possible
events on the sample spaces described above:

Example 1, continued.

A = {the outcome of the die is even} = {2, 4, 6}.

Example 2, continued.

A = {exactly two tosses come out tails} = {(0, 1, 1), (1, 0, 1), (1, 1, 0)}.

Example 3, continued.

A = {the second toss comes out tails and the fifth heads}

= {ω = (xi)
∞

i=1 ∈ {0, 1}N : x2 = 1 and x5 = 0 }.

Example 4, continued.

A = {at least 6 customers arrived} = {6, 7, 8, 9, . . .}.

Example 5, continued.

A = {the bulb lasted less than 4 hours} = [0, 4).

In discrete sample spaces the class F of events contains all subsets of the sample
space. But in more complicated sample spaces this cannot be the case. In the
general theory F is a σ-algebra in the sample space. This means that F satisfies
the following axioms:

(i) Ω ∈ F and ∅ ∈ F (The sample space Ω and the empty set ∅ are events.)
(ii) If A ∈ F then Ac ∈ F . (Ac is the complement of A, this is the set of points

of Ω that do not belong in A.)

(iii) If A1, A2, A3, . . . ∈ F then also

∞
⋃

i=1

Ai ∈ F . (In words: the union of a

sequence of events is also an event.)
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(c) The probability measure P . This is a function on events that gives the
probability P (A) of each event A in F . It must satisfy these axioms:

(i) 0 ≤ P (A) ≤ 1 for all A ∈ F .
(ii) P (∅) = 0 and P (Ω) = 1.
(iii) If A1, A2, A3, . . . are pairwise disjoint events, meaning that Ai ∩ Aj = ∅

whenever i 6= j, then

P

( ∞
⋃

i=1

Ai

)

=

∞
∑

i=1

P (Ai).

The necessity to restrict F in uncountable sample spaces arises from the fact
that we cannot always consistently define probabilities for all subsets of uncountable
sample spaces. The way around this difficulty is to admit as events only members of
certain judiciously defined σ-algebras. These complications cannot be appreciated
without some study of measure theory. The good news is that in practice one never
encounters these bad events that the theory cannot handle. It is a hard exercise in
real analysis to construct a ‘nonmeasurable set’ on R which lies outside the natural
σ-algebra.

In discrete sample spaces these difficulties can be completely avoided. Suppose
our sample space Ω is either finite or countably infinite. To define a probability
measure on Ω we only need an assigment P (ω) of probabilities for all sample points
ω that together satisfy

0 ≤ P (ω) ≤ 1 for all ω ∈ Ω

and
∑

ω∈Ω

P (ω) = 1.

Then for any subset A of Ω we can define a probability by

(1) P (A) =
∑

ω∈A

P (ω).

This concrete construction shows that there is no problem in giving each subset
A ⊂ Ω a probability, and it is easy to check that axioms (i)–(iii) for P above are
satisfied.

This approach does not work for uncountable spaces such as the real line. The
interesting probability measures there typically give individual sample points zero
probability, and the summation in (1) has to be replaced by integration.
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Here are examples of natural probability measures on the previously defined
sample spaces:

Example 1, continued. If we assume that the die is fair, then it is reasonable to
regard each outcome as equally likely, and the appropriate probability measure is
P (ω) = 1/6 for each ω ∈ Ω.

Example 2, continued. If the coin is fair, then each outcome should be equally
likely: P (ω) = 1/8 for each ω ∈ Ω. If the coin is not fair but gives tails with
probability p and heads with probability 1 − p for some fixed number p ∈ (0, 1),
then the appropriate P is defined for sample points ω = (x1, x2, x3) by

P (x1, x2, x3) = px1+x2+x3(1 − p)3−(x1+x2+x3).

The uniform measure P (ω) = 1/8 is recovered in the case p = 1/2.

Example 3, continued. Defining a probability measure on the space of infinite se-
quences requires some measure-theoretic machinery. We will not concern ourselves
with these technical issues. We simply take for granted that it is possible to con-
struct the probability measures on Ω that we need. For example, there is a prob-
ability measure P on Ω such that, for any choice of numbers a1, a2, . . . , an from
{0, 1},

(2) P{ω ∈ Ω : ω1 = a1, . . . , ωn = an} = 2−n.

The number 2−n corresponds to a fair coin (p = 1/2 in Example 2), and the
construction can be performed for any p just as well. The result from measure
theory that makes all this work is called Kolmogorov’s extension theorem.

Example 4, continued. A natural choice of probability measure here could be a
Poisson distribution:

(3) P (ω) =
e−λλω

ω!
for ω = 0, 1, 2, 3, . . .

The number λ > 0 is a parameter of the model that in an actual modeling task
would be chosen to fit the observed data.
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Example 5, continued. A possible choice here would be an exponential distribution
with parameter λ > 0. This can be defined by saying that the probability of an
interval [a, b] with 0 ≤ a < b < ∞ is given by

P [a, b] =

∫ b

a

λe−λxdx.

Here f(x) = λe−λx is the density function of the exponential distribution with
parameter λ. Equivalently, the same probability measure can be defined by giving
the (cumulative) distribution function

F (x) = P [0, x] = 1 − e−λx, x ≥ 0.

II. Random Variables and Their Expectations

From now on the discussion always takes place in the context of some fixed
probability space (Ω,F , P ). You may assume that Ω is discrete, that F is the
collection of all subsets of Ω, and that P is defined by (1) from some given numbers
{P (ω) : ω ∈ Ω} that give the probabilities of individual sample points.

A random variable is a function defined on the sample space Ω. While functions
in calculus are typically denoted by letters such as f or g, random variables are
often denoted by capital letters such as X , Y and Z. Thus a random variable X
associates a number X(ω) to each sample point ω.

For each event A there is an indicator random variable IA defined by

IA(ω) =

{

1, if ω ∈ A

0, if ω /∈ A.

Other common notations for an indicator random variable are 1A and χA.

If X1, X2, . . . , Xn are random variables defined on some common probability
space, then X = (X1, X2, . . . , Xn) defines an Rn-valued random variable, also
called a random vector.

Most interesting events are of the type {ω ∈ Ω : X(ω) ∈ B}, where X is a
random variable and B is a subset of the space into which X maps (so typically the
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real line R or, in the case of a random vector, a Euclidean space Rn). The above
notation is usually abbreviated as {X ∈ B}, and it reads “the event that the value
of X lies in the set B.”

Examples:

Example 2, continued. Let the random variable Y be the outcome of the third
toss. If we denote the elements of Ω by ω = (x1, x2, x3), then Y is defined by
Y (ω) = x3. Suppose you receive $5 each time the coin comes up heads. Let Z
be the amount you won. Then you could express Z as a function on Ω by writing
Z(ω) = 5(3 − (x1 + x2 + x3)). The event {Z = 10} is the subset of sample points
ω that satisfy the condition Z(ω) = 10. So

{Z = 10} = {ω ∈ Ω : Z(ω) = 10} = {(0, 0, 1), (0, 1, 0), (1, 0, 0)}.

The probability measure P on the sample space gives the probabilities of the values
of a random variable. For example, in the case of a fair coin,

P{Z = 10} = P{(0, 0, 1), (0, 1, 0), (1, 0, 0)} = 3/8.

Example 3, continued. In the sequence setting it is customary to use these so-called
coordinate random variables Xi: For a sample point ω = (xi)

∞

i=1, define Xi(ω) = xi.
If our probability measure P is the one given by formula (2), then for any choice of
numbers a1, a2, . . . , an from {0, 1},

(4) P{X1 = a1, . . . , Xn = an} = 2−n.

If Sn is the number of tails in the first n tosses, then

(5) Sn =
n

∑

i=1

Xi.

Here we are defining a new random variable Sn in terms of the old ones X1, X2,
X3, . . . The sample point has been left out of formula (5) as is typical to simplify
notation. The precise meaning of equation (5) is that for each ω ∈ Ω, the number
Sn(ω) is defined in terms of the numbers X1(ω), X2(ω), X3(ω), . . . by

Sn(ω) =

n
∑

i=1

Xi(ω).
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Again, probabilities of the values of random variables come from the probability
measure on the sample space. From (2) or (4) it follows that

P{S5 = 3} = (the number of ways of getting 3 tails in 5 tosses) · 2−5

=

(

5

3

)

2−5 =
5

16
.

Example 4, continued. Let the random variable X be the number of customers.
Then, as a function on Ω, X is somewhat trivial, namely the identity function:
X(ω) = ω. Formula (3) from above can be expressed as

(6) P (X = k) =
e−λλk

k!
for k = 0, 1, 2, 3, . . .

Now we say that the random variable X is Poisson distributed with parameter λ.

Examples 3 and 4 are instructive in the sense that we prefer to express things in
terms of random variables. That is, we prefer formulas (4) and (6) over formulas (2)
and (3). The probability space recedes to the background and sometimes vanishes
entirely from the discussion. In example 4 we would simply say “let X be a random
variable with Poisson(λ) distribution” by which mean that (6) holds. No probability
space needs to be specified because it is understood that the simple probability space
of Example 4 can be imagined in the background.

No matter what the original probability space (Ω,F , P ) is, we can often translate
all the relevant probabilistic information to a more familiar space such as R or Z+

by using the distribution of a random variable. Suppose first that X is a Z+-
valued random variable. (This means that X is a function from Ω into Z+.) The
distribution (or probability distribution) of X is a sequence (pk)∞k=0 of numbers
defined by

(7) pk = P (X = k), k = 0, 1, 2, 3, . . .

Thus the distribution of X is actually a probability measure on Z+. All probabilistic
statements about X can be expressed in terms of its distribution, so we can forget
the original probability space. Sometimes we need to allow for the possibility that
X takes on the value ∞. Then an additional number

p∞ = P (X = ∞) = 1 −
∞
∑

k=0

pk
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needs to be added to the distribution.

If we want to talk about more than one random variable simultaneously, we
need joint distributions. Suppose X1, X2, . . . , Xn are Z+-valued random variables
defined on a common probability space. Their joint distribution is a collection

(pk1,... ,kn
: k1, . . . , kn ∈ Z+)

of numbers indexed by the n-tuples (k1, . . . , kn) of nonnegative integers, and defined
by

pk1,... ,kn
= P (X1 = k1, . . . , Xn = kn).

An example: formula (4) above specifies the joint distribution of the first n coin
tosses.

Similar formulas are valid when the range of X is some other countable subset
of R instead of Z+. But when the range of X is not countable, a sequence of
numbers such as (7) cannot specify its distribution. Then we need the (cumulative)
distribution function (c.d.f.) of X , denoted by F and defined for all real numbers
x by

F (x) = P (X ≤ x).

If F is differentiable, then f(x) = F ′(x) is the probability density of X .

The expectation of a random variable X is a number defined by

(8) E[X ] =
∑

x

xP (X = x)

if X has only countably many possible values x, and by

E[X ] =

∫ +∞

−∞

xf(x)dx

if X has density f , provided the sum (integral) exists. Both formulas can be
subsumed under the formula

E[X ] =

∫ +∞

−∞

x dF (x),

where F is the c.d.f. of X , and the integral is interpreted as a Riemann-Stieltjes
integral. (The Riemann-Stieltjes integral is a topic of a course on advanced calculus
or beginning real analysis. Do not worry even if you are not familiar with it.)
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It follows from formula (8) that if X is Z+-valued, then

E[X ] =

∞
∑

k=0

kpk,

and furthermore, if f is a function defined on Z+, then the composition f(X) is a
new random variable and it has expectation

E[f(X)] =

∞
∑

k=0

f(k)pk.

Note that E[X ] = ∞ if P (X = ∞) > 0.

The expectation of an indicator random variable is the probability of the event
in question, as an easy calculation shows:

E[IA] = 1 · P (IA = 1) + 0 · P (IA = 0) = 1 · P (A) + 0 · P (Ac) = P (A).

Example 2, continued. Let us calculate the expectation of the reward Z, assuming
the coin is fair:

E[Z] = 0 · P (Z = 0) + 5 · P (Z = 5) + 10 · P (Z = 10) + 15 · P (Z = 15)

= 5 ·

(

3

1

)

·
1

8
+ 10 ·

(

3

2

)

·
1

8
+ 15 ·

(

3

3

)

·
1

8

=
5 · 3

8
+

10 · 3

8
+

15 · 1

8

=
15

2
.

An important property of the expectation is its additivity: Suppose X1, . . . , Xn

are random variables defined on a common probability space and c1, . . . , cn are
numbers. Then c1X1 + · · ·+ cnXn is also a random variable and

E[c1X1 + · · ·+ cnXn] = c1E[X1] + · · ·+ cnE[Xn].
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III. Independence and Conditioning

Suppose X1, . . . , Xn are discrete random variables (they have countable ranges)
defined on a common probability space. They are mutually independent if the
following holds for all possible values y1, . . . , yn of their range:

(9)
P (X1 = y1, X2 = y2, . . . , Xn = yn)

= P (X1 = y1) · P (X2 = y2) · · ·P (Xn = yn).

A collection of events A1, . . . , An are mutually independent if their indicator ran-
dom variables are mutually independent.

Given an event B such that P (B) > 0, we can define a new probability measure
P (· |B) on Ω by conditioning on B: The conditional probability of an event A,
given B, is defined by

P (A|B) =
P (A ∩ B)

P (B)
.

You can think of conditioning as first restricting the sample space to the set B, and
then renormalizing the probability measure by dividing by P (B) so that the total
(new) space again has probability 1.

Check that the following holds: Two events A and B are independent if and only
if P (A|B) = P (A) and P (B|A) = P (B). The equality P (A|B) = P (A) means that
the event B gives no information about the event A, in the sense that the probability
of A’s occurrence is not influenced by whether or not B occurred. This then is the
intuitive meaning of statistical independence: If X and Y are independent random
variables, knowledge of the value of X should give us no information about the
value of Y .

Independence splits the expectation of a product of random variables into a
product of expectations: Suppose X1, . . . , Xn are mutually independent random
variables whose expectations are finite. Then the product X1 · X2 · X3 · · ·Xn is a
random variable, and

E[X1 · X2 · X3 · · ·Xn] = E[X1] · E[X2] · E[X3] · · ·E[Xn].



12

Literature

An unsurpassed classic of the field is William Feller’s two-volume work An Intro-
duction to Probability Theory and Its Applications, Volumes I and II, John Wiley
& Sons. The entire first volume uses no measure theory.

Here are some alternative textbooks for looking up material, including the basics
that our textbook Adventures in Stochastic Processes leaves out.

Rick Durrett: Essentials of Stochastic Processes.

Leo Breiman: Probability and Stochastic Processes With a View Toward Applica-
tions.

G. Grimmett and D. Stirzaker: Probability and Random Processes.

Sheldon Ross: A First Course in Probability.

Sheldon Ross: Stochastic Processes.


