Large deviations and fluctuation exponents for some polymer models

Timo Seppäläinen

Department of Mathematics
University of Wisconsin-Madison

2011
1 Introduction

2 Large deviations

3 Fluctuation exponents
 - KPZ equation
 - Log-gamma polymer
Directed polymer in a random environment

simple random walk path \((x(t), t), t \in \mathbb{Z}_+\)
Directed polymer in a random environment

simple random walk path \((x(t), t), t \in \mathbb{Z}_+\)

space-time environment \(\{\omega(x, t) : x \in \mathbb{Z}^d, t \in \mathbb{N}\}\)
Directed polymer in a random environment

simple random walk path \((x(t), t), \ t \in \mathbb{Z}_+\)

space-time environment \(\{\omega(x, t) : x \in \mathbb{Z}^d, \ t \in \mathbb{N}\}\)

inverse temperature \(\beta > 0\)
Directed polymer in a random environment

simple random walk path \((x(t), t), t \in \mathbb{Z}_+\)

space-time environment \(\{\omega(x, t) : x \in \mathbb{Z}^d, t \in \mathbb{N}\}\)

inverse temperature \(\beta > 0\)

quenched probability measure on paths

\[
Q_n\{x(\cdot)\} = \frac{1}{Z_n} \exp\left\{\beta \sum_{t=1}^{n} \omega(x(t), t)\right\}
\]
Directed polymer in a random environment

simple random walk path \((x(t), t), t \in \mathbb{Z}_+\)

space-time environment \(\{\omega(x, t) : x \in \mathbb{Z}^d, t \in \mathbb{N}\}\)

inverse temperature \(\beta > 0\)

quenched probability measure on paths

\[
Q_n\{x(\cdot)\} = \frac{1}{Z_n} \exp\left\{\beta \sum_{t=1}^n \omega(x(t), t)\right\}
\]

partition function

\[
Z_n = \sum_{x(\cdot)} \exp\left\{\beta \sum_{t=1}^n \omega(x(t), t)\right\}
\]

(summed over all \(n\)-paths)
Directed polymer in a random environment

simple random walk path \((x(t), t), t \in \mathbb{Z}_+\)

space-time environment \(\{\omega(x, t) : x \in \mathbb{Z}^d, t \in \mathbb{N}\}\)

inverse temperature \(\beta > 0\)

quenched probability measure on paths

\[
Q_n\{x(\cdot)\} = \frac{1}{Z_n} \exp\left\{ \beta \sum_{t=1}^{n} \omega(x(t), t) \right\}
\]

partition function

\[
Z_n = \sum_{x(\cdot)} \exp\left\{ \beta \sum_{t=1}^{n} \omega(x(t), t) \right\}
\]

(summed over all \(n\)-paths)

\(\mathbb{P}\) probability distribution on \(\omega\), often \(\{\omega(x, t)\}\) i.i.d.
Key quantities again:

- Quenched measure $Q_n \{ x(\cdot) \} = Z_n^{-1} \exp \left\{ \beta \sum_{t=1}^n \omega(x(t), t) \right\}$

- Partition function $Z_n = \sum_{x(\cdot)} \exp \left\{ \beta \sum_{t=1}^n \omega(x(t), t) \right\}$
Key quantities again:

- Quenched measure $Q_n\{x(\cdot)\} = Z_n^{-1} \exp\left\{ \beta \sum_{t=1}^{n} \omega(x(t), t) \right\}$

- Partition function $Z_n = \sum_{x(\cdot)} \exp\left\{ \beta \sum_{t=1}^{n} \omega(x(t), t) \right\}$

Questions:

- Behavior of walk $x(\cdot)$ under Q_n on large scales: fluctuation exponents, central limit theorems, large deviations
Key quantities again:

- Quenched measure $Q_n\{x(\cdot)\} = Z_n^{-1} \exp\left\{ \beta \sum_{t=1}^{n} \omega(x(t), t) \right\}$

- Partition function $Z_n = \sum_{x(\cdot)} \exp\left\{ \beta \sum_{t=1}^{n} \omega(x(t), t) \right\}$

Questions:

- Behavior of walk $x(\cdot)$ under Q_n on large scales: fluctuation exponents, central limit theorems, large deviations

- Behavior of log Z_n (now also random as a function of ω)
Key quantities again:

- Quenched measure $Q_n \{ x(\cdot) \} = Z_n^{-1} \exp \left\{ \beta \sum_{t=1}^{n} \omega(x(t), t) \right\}$

- Partition function $Z_n = \sum_{x(\cdot)} \exp \left\{ \beta \sum_{t=1}^{n} \omega(x(t), t) \right\}$

Questions:

- Behavior of walk $x(\cdot)$ under Q_n on large scales: fluctuation exponents, central limit theorems, large deviations

- Behavior of $\log Z_n$ (now also random as a function of ω)

- Dependence on β and d
Large deviations

Question: describe quenched limit \(\lim_{n \to \infty} n^{-1} \log Z_n \) (\(\mathbb{P} \)-a.s.)
Question: describe quenched limit $\lim_{n \to \infty} n^{-1} \log Z_n$ (P-a.s.)

Large deviation perspective.
Large deviations

Question: describe quenched limit \(\lim_{n \to \infty} n^{-1} \log Z_n \) \((\mathbb{P}\text{-a.s.})\)

Large deviation perspective.

Generalize: \(E_0 = \) expectation under background RW \(X_n \) on \(\mathbb{Z}^\nu \).
Large deviations

Question: describe quenched limit \(\lim_{n \to \infty} n^{-1} \log Z_n \) (\(\mathbb{P} \)-a.s.)

Large deviation perspective.

Generalize: \(E_0 = \) expectation under background RW \(X_n \) on \(\mathbb{Z}^\nu \).

\[
n^{-1} \log Z_n = n^{-1} \log E_0 \left[e^{\beta \sum_{k=0}^{n-1} \omega X_k} \right]
\]
Large deviations

Question: describe quenched limit \(\lim_{n \to \infty} n^{-1} \log Z_n \) \((\mathbb{P}\text{-a.s.})\)

Large deviation perspective.

Generalize: \(E_0 = \) expectation under background RW \(X_n \) on \(\mathbb{Z}^\nu \).

\[
n^{-1} \log Z_n = n^{-1} \log E_0 \left[e^{\beta \sum_{k=0}^{n-1} \omega X_k} \right]
\]

\[
= n^{-1} \log E_0 \left[e^{\sum_{k=0}^{n-1} g(\omega X_k)} \right]
\]
Large deviations

Question: describe quenched limit \(\lim_{n \to \infty} n^{-1} \log Z_n \) \((\mathbb{P}\text{-a.s.})\)

Large deviation perspective.

Generalize: \(E_0 = \text{expectation under background RW } X_n \text{ on } \mathbb{Z}^\nu \).

\[
n^{-1} \log Z_n = n^{-1} \log E_0 \left[e^{\beta \sum_{k=0}^{n-1} \omega X_k} \right]
= n^{-1} \log E_0 \left[e^{\sum_{k=0}^{n-1} g(\omega X_k)} \right]
= n^{-1} \log E_0 \left[e^{\sum_{k=0}^{n-1} g(T_{X_k} \omega, Z_{k+1}, k+\ell)} \right]
\]
Large deviations

Question: describe quenched limit \(\lim_{n \to \infty} n^{-1} \log Z_n \) \((\mathbb{P}\text{-a.s.})\)

Large deviation perspective.

Generalize: \(E_0 = \text{expectation under background RW } X_n \text{ on } \mathbb{Z}^\nu. \)

\[
n^{-1} \log Z_n = n^{-1} \log E_0 \left[e^{\beta \sum_{k=0}^{n-1} \omega X_k} \right] \\
= n^{-1} \log E_0 \left[e^{\sum_{k=0}^{n-1} g(\omega X_k)} \right] \\
= n^{-1} \log E_0 \left[e^{\sum_{k=0}^{n-1} g(T X_k \omega, Z_{k+1}, k+\ell)} \right]
\]

Introduced shift \((T X \omega)_y = \omega_{x+y}, \text{ steps } Z_k = X_k - X_{k-1} \in \mathcal{R}, \)

\(Z_{1,\ell} = (Z_1, Z_2, \ldots, Z_\ell). \)
Question: describe quenched limit \(\lim_{n \to \infty} n^{-1} \log Z_n \) \((\mathbb{P}\text{-a.s.}) \)

Large deviation perspective.

Generalize: \(E_0 = \) expectation under background RW \(X_n \) on \(\mathbb{Z}^\nu \).

\[
n^{-1} \log Z_n = n^{-1} \log E_0 \left[e^{\beta \sum_{k=0}^{n-1} \omega X_k} \right]
\]

\[
= n^{-1} \log E_0 \left[e^{\sum_{k=0}^{n-1} g(\omega X_k)} \right]
\]

\[
= n^{-1} \log E_0 \left[e^{\sum_{k=0}^{n-1} g(T x_\omega, Z_{k+1,k+\ell})} \right]
\]

Introduced shift \((T x_\omega)_y = \omega x + y \), steps \(Z_k = X_k - X_{k-1} \in \mathcal{R} \), \(Z_{1,\ell} = (Z_1, Z_2, \ldots, Z_\ell) \).

\(g(\omega, z_{1,\ell}) \) is a function on \(\Omega_\ell = \Omega \times \mathcal{R}^\ell \).
Define empirical measure \(R_n = n^{-1} \sum_{k=0}^{n-1} \delta_{T_{X_k}\omega, Z_{k+1}, k+\ell} \).

It is a probability measure on \(\Omega_\ell \).
Define empirical measure $R_n = n^{-1} \sum_{k=0}^{n-1} \delta_{T_{X_k^\omega}, Z_{k+1}, k+\ell}$.

It is a probability measure on Ω_ℓ.

Then $n^{-1} \log Z_n = n^{-1} \log E_0 \left[e^{nR_n(g)} \right]$.
Define empirical measure $R_n = n^{-1} \sum_{k=0}^{n-1} \delta_{T^k \omega, Z_{k+1}, k+\ell}$. It is a probability measure on Ω_ℓ.

Then $n^{-1} \log Z_n = n^{-1} \log E_0[e^{nR_n(g)}]$

Task: understand large deviations of $P_0\{R_n \in \cdot\}$ under \mathbb{P}-a.e. fixed ω (quenched).
Define empirical measure \(R_n = n^{-1} \sum_{k=0}^{n-1} \delta_{T^k X_n, Z_{k+1}, k + \ell} \).

It is a probability measure on \(\Omega_\ell \).

Then \(n^{-1} \log Z_n = n^{-1} \log E_0 [e^{nR_n(g)}] \)

Task: understand large deviations of \(P_0 \{ R_n \in \cdot \} \) under \(\mathbb{P} \)-a.e. fixed \(\omega \) (quenched).

Process: Markov chain \((T^k X_n, Z_{n+1,k+\ell}) \) on \(\Omega_\ell \) under a fixed \(\omega \).
Define empirical measure \(R_n = n^{-1} \sum_{k=0}^{n-1} \delta_{T^k X, Z_{k+1}, k+\ell} \).

It is a probability measure on \(\Omega_{\ell} \).

Then \(n^{-1} \log Z_n = n^{-1} \log E_0[e^{nR_n(g)}] \)

Task: understand large deviations of \(P_0\{ R_n \in \cdot \} \) under \(\mathbb{P}\)-a.e. fixed \(\omega \) (quenched).

Process: Markov chain \((T^k X, Z_{n+1}, n+\ell)\) on \(\Omega_{\ell} \) under a fixed \(\omega \).

Evolution: pick random step \(z \) from \(\mathcal{R} \), then execute move \(S_z : (\omega, z_1,\ell) \rightarrow (T_{z_1} \omega, z_2,\ell z) \).
Define empirical measure $R_n = n^{-1} \sum_{k=0}^{n-1} \delta_{T_{X_k} \omega, Z_{k+1}, k+\ell}$.

It is a probability measure on Ω_{ℓ}.

Then $n^{-1} \log Z_n = n^{-1} \log E_0[e^{nR_n(g)}]$

Task: understand large deviations of $P_0\{R_n \in \cdot\}$ under \mathbb{P}-a.e. fixed ω (quenched).

Process: Markov chain $(T_{X_n} \omega, Z_{n+1}, n+\ell)$ on Ω_{ℓ} under a fixed ω.

Evolution: pick random step z from \mathcal{R}, then execute move $S_z : (\omega, z_1, \ell) \rightarrow (T_{z_1} \omega, z_2, \ell z)$.

Defines kernel p on Ω_{ℓ}: $p(\eta, S_z \eta) = |\mathcal{R}|^{-1}$.
Entropy

For $\mu \in \mathcal{M}_1(\Omega_\ell)$, q Markov kernel on Ω_ℓ, usual relative entropy on Ω_ℓ^2:

$$H(\mu \times q \mid \mu \times p) = \int_{\Omega_\ell} \sum_{z \in \mathcal{R}} q(\eta, S_z \eta) \log \frac{q(\eta, S_z \eta)}{p(\eta, S_z \eta)} \mu(d\eta).$$
Entropy

For $\mu \in \mathcal{M}_1(\Omega_\ell)$, q Markov kernel on Ω_ℓ, usual relative entropy on Ω_ℓ^2:

$$H(\mu \times q | \mu \times p) = \int_{\Omega_\ell} \sum_{z \in \mathcal{R}} q(\eta, S_z \eta) \log \frac{q(\eta, S_z \eta)}{p(\eta, S_z \eta)} \mu(d\eta).$$

The effect of \mathbb{P} in the background?
For $\mu \in \mathcal{M}_1(\Omega_\ell)$, q Markov kernel on Ω_ℓ, usual relative entropy on Ω_ℓ^2:

$$H(\mu \times q \mid \mu \times p) = \int_{\Omega_\ell} \sum_{z \in \mathcal{R}} q(\eta, S_z \eta) \log \frac{q(\eta, S_z \eta)}{p(\eta, S_z \eta)} \mu(d\eta).$$

The effect of \mathbb{P} in the background?

Let $\mu_0 = \Omega$-marginal of $\mu \in \mathcal{M}_1(\Omega_\ell)$.
For $\mu \in M_1(\Omega_\ell)$, q Markov kernel on Ω_ℓ, usual relative entropy on Ω_ℓ^2:

$$H(\mu \times q \mid \mu \times p) = \int_{\Omega_\ell} \sum_{z \in R} q(\eta, S_z \eta) \log \frac{q(\eta, S_z \eta)}{p(\eta, S_z \eta)} \mu(d\eta).$$

The effect of \mathbb{P} in the background?

Let $\mu_0 = \Omega$-marginal of $\mu \in M_1(\Omega_\ell)$. Define

$$H_\mathbb{P}(\mu) = \begin{cases} \inf \left\{ H(\mu \times q \mid \mu \times p) : \mu q = \mu \right\} & \text{if } \mu_0 \ll \mathbb{P} \\ \infty & \text{otherwise.} \end{cases}$$

Infimum taken over Markov kernels q that fix μ.
Entropy

For $\mu \in \mathcal{M}_1(\Omega_\ell)$, q Markov kernel on Ω_ℓ, usual relative entropy on Ω_ℓ^2:

$$H(\mu \times q \mid \mu \times p) = \int_{\Omega_\ell} \sum_{z \in \mathcal{R}} q(\eta, S_z \eta) \log \frac{q(\eta, S_z \eta)}{p(\eta, S_z \eta)} \mu(d\eta).$$

The effect of \mathbb{P} in the background?

Let $\mu_0 = \Omega$-marginal of $\mu \in \mathcal{M}_1(\Omega_\ell)$. Define

$$H_\mathbb{P}(\mu) = \begin{cases} \inf \left\{ H(\mu \times q \mid \mu \times p) : \mu q = \mu \right\} & \text{if } \mu_0 \ll \mathbb{P} \\ \infty & \text{otherwise.} \end{cases}$$

Infimum taken over Markov kernels q that fix μ.

$H_\mathbb{P}$ is convex but not lower semicontinuous.
Assumptions.

- Environment \(\{ \omega_x \} \) IID under \(\mathbb{P} \).
- \(g \) local function on \(\Omega_\ell \), \(\mathbb{E}|g|^p < \infty \) for some \(p > \nu \).
Assumptions.

- Environment $\{\omega_x\}$ IID under \mathbb{P}.
- g local function on Ω_ℓ, $\mathbb{E}|g|^p < \infty$ for some $p > \nu$.

Theorem. (Rassoul-Agha, S, Yilmaz) Deterministic limit

$$\Lambda(g) = \lim_{n \to \infty} n^{-1} \log E_0[e^{nR_n(g)}]$$
exists \mathbb{P}-a.s.
Assumptions.

- Environment \(\{ \omega_x \} \) IID under \(\mathbb{P} \).
- \(g \) local function on \(\Omega \), \(\mathbb{E}|g|^p < \infty \) for some \(p > \nu \).

Theorem. (Rassoul-Agha, S, Yilmaz) Deterministic limit

\[
\Lambda(g) = \lim_{n \to \infty} n^{-1} \log E_0 \left[e^{nR_n(g)} \right] \quad \text{exists} \quad \mathbb{P}\text{-a.s.}
\]

and

\[
\Lambda(g) = H^\#(g) = \sup_{\mu} \sup_{c > 0} \left\{ E^\mu [g \wedge c] - H_\mathbb{P}(\mu) \right\}.
\]
Assumptions.

- Environment \(\{ \omega_x \} \) IID under \(\mathbb{P} \).
- \(g \) local function on \(\Omega_\ell \), \(\mathbb{E}|g|^p < \infty \) for some \(p > \nu \).

Theorem. (Rassoul-Agha, S, Yilmaz) Deterministic limit

\[
\Lambda(g) = \lim_{n \to \infty} n^{-1} \log \mathbb{E}_0 \left[e^{nR_n(g)} \right] \text{ exists } \mathbb{P}\text{-a.s.}
\]

and

\[
\Lambda(g) = H^\#_\mathbb{P}(g) \equiv \sup_\mu \sup_{c>0} \left\{ E^\mu [g \wedge c] - H_\mathbb{P}(\mu) \right\}.
\]

Remarks.

- With higher moments of \(g \) admit mixing \(\mathbb{P} \).
Assumptions.

- Environment \(\{\omega_x\} \) IID under \(\mathbb{P} \).
- \(g \) local function on \(\Omega_\ell \), \(\mathbb{E}|g|^p < \infty \) for some \(p > \nu \).

Theorem. (Rassoul-Agha, S, Yilmaz) Deterministic limit

\[
\Lambda(g) = \lim_{n \to \infty} n^{-1} \log \mathbb{E}_0 \left[e^{nR_n(g)} \right] \quad \text{exists} \quad \mathbb{P}\text{-a.s.}
\]

and

\[
\Lambda(g) = H_\mathbb{P}^\#(g) \equiv \sup_{\mu} \sup_{c > 0} \left\{ E^\mu[g \wedge c] - H_\mathbb{P}(\mu) \right\}.
\]

Remarks.

- With higher moments of \(g \) admit mixing \(\mathbb{P} \).
- \(\Lambda(g) > -\infty \).
Assumptions.

- Environment $\{\omega_x\}$ IID under \mathbb{P}.
- g local function on Ω_ℓ, $\mathbb{E}|g|^p < \infty$ for some $p > \nu$.

Theorem. (Rassoul-Agha, S, Yilmaz) Deterministic limit

$$\Lambda(g) = \lim_{n \to \infty} n^{-1} \log E_0 \left[e^{nR_n(g)} \right]$$

exists \mathbb{P}-a.s.

and

$$\Lambda(g) = H^\#_{\mathbb{P}}(g) \equiv \sup_{\mu} \sup_{c>0} \left\{ E^\mu [g \wedge c] - H_{\mathbb{P}}(\mu) \right\}.$$

Remarks.

- With higher moments of g admit mixing \mathbb{P}.
- $\Lambda(g) > -\infty$.
- IID directed $+$ above moment $\Rightarrow \Lambda(g)$ finite.
Quenched weak LDP (large deviation principle) under Q_n.

\[Q_n(A) = \frac{1}{E_0[e^{nR_n(g)}]} \ E_0[e^{nR_n(g)} 1_A(\omega, Z_1, \infty)] \]
Quenched weak LDP (large deviation principle) under Q_n.

$$Q_n(A) = \frac{1}{E_0[e^{nR_n(g)}]} E_0[e^{nR_n(g)}] E_0[e^{nR_n(g)}] 1_A(\omega, Z_1, \infty)$$

Rate function $I(\mu) = \inf_{c>0} \{ H_p(\mu) - E^\mu(g \wedge c) + \Lambda(g) \}$.
Quenched weak LDP (large deviation principle) under Q_n.

$$Q_n(A) = \frac{1}{E_0[e^{nR_n(g)}]} E_0[e^{nR_n(g)}1_A(\omega, Z_1, \infty)]$$

Rate function

$$I(\mu) = \inf_{c > 0} \{ H(\mu) - E^\mu(g \wedge c) + \Lambda(g) \}.$$

Theorem. (RSY) Assumptions as above and $\Lambda(g)$ finite. Then \mathbb{P}-a.s. for compact $F \subseteq \mathcal{M}_1(\Omega_\ell)$ and open $G \subseteq \mathcal{M}_1(\Omega_\ell)$:

$$\lim_{n \to \infty} n^{-1} \log Q_n\{R_n \in F\} \leq - \inf_{\mu \in F} I(\mu)$$

$$\lim_{n \to \infty} n^{-1} \log Q_n\{R_n \in G\} \geq - \inf_{\mu \in G} I(\mu)$$
Quenched weak LDP (large deviation principle) under Q_n.

$$Q_n(A) = \frac{1}{E_0[e^{nR_n(g)}]} E_0[e^{nR_n(g)}1_A(\omega, Z_1, \infty)]$$

Rate function

$$I(\mu) = \inf_{c > 0} \{ H_\mathbb{P}(\mu) - E^\mu(g \wedge c) + \Lambda(g) \}.$$

Theorem. (RSY) Assumptions as above and $\Lambda(g)$ finite. Then

\mathbb{P}-a.s. for compact $F \subseteq \mathcal{M}_1(\Omega_\ell)$ and open $G \subseteq \mathcal{M}_1(\Omega_\ell)$:

$$\lim_{n \to \infty} n^{-1} \log Q_n\{R_n \in F\} \leq - \inf_{\mu \in F} I(\mu)$$

$$\lim_{n \to \infty} n^{-1} \log Q_n\{R_n \in G\} \geq - \inf_{\mu \in G} I(\mu)$$

IID environment, directed walk: full LDP holds.
Return to $d + 1$ dim directed polymer in i.i.d. environment.
Return to \(d + 1 \) dim directed polymer in i.i.d. environment.

Question: Is the path \(x(\cdot) \) diffusive or not, that is, does it scale like standard RW?
Return to \(d + 1 \) dim directed polymer in i.i.d. environment.

Question: Is the path \(x(\cdot) \) diffusive or not, that is, does it scale like standard RW?

Early results: diffusive behavior for \(d \geq 3 \) and small \(\beta > 0 \):

- 1988 Imbrie and Spencer: \(n^{-1}E^Q(|x(n)|^2) \to c \) \(\mathbb{P}\text{-a.s.} \)
- 1989 Bolthausen: quenched CLT for \(n^{-1/2}x(n) \).
Return to $d + 1$ dim directed polymer in i.i.d. environment.

Question: Is the path $x(\cdot)$ diffusive or not, that is, does it scale like standard RW?

Early results: diffusive behavior for $d \geq 3$ and small $\beta > 0$:

1988 Imbrie and Spencer: $n^{-1}E^Q(|x(n)|^2) \to c \quad \mathbb{P}$-a.s.

1989 Bolthausen: quenched CLT for $n^{-1/2}x(n)$.

In the opposite direction: if $d = 1, 2$, or $d \geq 3$ and β large enough, then $\exists \ c > 0$ s.t.

$$\lim_{n \to \infty} \max_z Q_n\{x(n) = z\} \geq c \quad \mathbb{P}$-a.s.$$

(Carmona and Hu 2002, Comets, Shiga, and Yoshida 2003)
Definition of fluctuation exponents ζ and χ
Definition of fluctuation exponents ζ and χ

- Fluctuations of the path $\{x(t) : 0 \leq t \leq n\}$ are of order n^ζ.
Definition of fluctuation exponents ζ and χ

- Fluctuations of the path $\{x(t) : 0 \leq t \leq n\}$ are of order n^ζ.
- Fluctuations of $\log Z_n$ are of order n^χ.
Definition of fluctuation exponents ζ and χ

- Fluctuations of the path $\{x(t) : 0 \leq t \leq n\}$ are of order n^ζ.

- Fluctuations of $\log Z_n$ are of order n^χ.

- Conjecture for $d = 1$: $\zeta = 2/3$ and $\chi = 1/3$.
Definition of fluctuation exponents ζ and χ

- Fluctuations of the path $\{x(t) : 0 \leq t \leq n\}$ are of order n^ζ.

- Fluctuations of log Z_n are of order n^χ.

- Conjecture for $d = 1$: $\zeta = 2/3$ and $\chi = 1/3$.

Results: these exact exponents for three particular 1+1 dimensional models.
Earlier results for $d = 1$ exponents

Past rigorous bounds give $3/5 \leq \zeta \leq 3/4$ and $\chi \geq 1/8$:
Earlier results for \(d = 1 \) exponents

Past rigorous bounds give \(3/5 \leq \zeta \leq 3/4 \) and \(\chi \geq 1/8 \):

Earlier results for $d = 1$ exponents

Past rigorous bounds give $3/5 \leq \zeta \leq 3/4$ and $\chi \geq 1/8$:

- **Gaussian RW in Gaussian potential**: Petermann 2000 $\zeta \geq 3/5$, Mejane 2004 $\zeta \leq 3/4$
Earlier results for $d = 1$ exponents

Past rigorous bounds give $3/5 \leq \zeta \leq 3/4$ and $\chi \geq 1/8$:

- Gaussian RW in Gaussian potential: Petermann 2000 $\zeta \geq 3/5$, Mejane 2004 $\zeta \leq 3/4$

Rigorous $\zeta = 2/3$ and $\chi = 1/3$ results

exist for three “exactly solvable” models:
Rigorous $\zeta = 2/3$ and $\chi = 1/3$ results

exist for three “exactly solvable” models:

1. Log-gamma polymer: $\beta = 1$ and $e^{-\omega(x,t)} \sim \text{Gamma}$, plus appropriate boundary conditions.
Rigorous $\zeta = 2/3$ and $\chi = 1/3$ results

exist for three “exactly solvable” models:

(1) Log-gamma polymer: $\beta = 1$ and $e^{-\omega(x,t)} \sim \text{Gamma}$, plus appropriate boundary conditions.

(2) Polymer in a Brownian environment (joint with B. Valkó) Model introduced by O’Connell and Yor 2001.
Rigorous $\zeta = 2/3$ and $\chi = 1/3$ results

exist for three “exactly solvable” models:

1. **Log-gamma polymer:** $\beta = 1$ and $e^{-\omega(x,t)} \sim \text{Gamma}$, plus appropriate boundary conditions.

2. **Polymer in a Brownian environment** (joint with B. Valkó) Model introduced by O’Connell and Yor 2001.

3. **Continuum directed polymer,** or Hopf-Cole solution of the Kardar-Parisi-Zhang (KPZ) equation:
 - (i) Initial height function given by two-sided Brownian motion (joint with M. Balázs and J. Quastel).
 - (ii) Narrow wedge initial condition (Amir, Corwin, Quastel).
Rigorous $\zeta = 2/3$ and $\chi = 1/3$ results

exist for three “exactly solvable” models:

1. Log-gamma polymer: $\beta = 1$ and $e^{-\omega(x,t)} \sim \text{Gamma}$, plus appropriate boundary conditions.

2. Polymer in a Brownian environment (joint with B. Valkó) Model introduced by O’Connell and Yor 2001.

3. Continuum directed polymer, or Hopf-Cole solution of the Kardar-Parisi-Zhang (KPZ) equation:

 (i) Initial height function given by two-sided Brownian motion (joint with M. Balázs and J. Quastel).

 (ii) Narrow wedge initial condition (Amir, Corwin, Quastel).

Next details on (3.i), then details on (1).
Hopf-Cole solution to KPZ equation

KPZ eqn for height function $h(t, x)$ of a 1+1 dim interface:

$$
 h_t = \frac{1}{2} h_{xx} - \frac{1}{2} (h_x)^2 + \dot{W}
$$

where $\dot{W} = \text{Gaussian space-time white noise.}$
Hopf-Cole solution to KPZ equation

KPZ eqn for height function \(h(t, x) \) of a 1+1 dim interface:

\[
h_t = \frac{1}{2} h_{xx} - \frac{1}{2} (h_x)^2 + \dot{W}
\]

where \(\dot{W} = \) Gaussian space-time white noise.

Initial height \(h(0, x) = \) two-sided Brownian motion for \(x \in \mathbb{R} \).
Hopf-Cole solution to KPZ equation

KPZ eqn for height function $h(t, x)$ of a 1+1 dim interface:

$$h_t = \frac{1}{2} h_{xx} - \frac{1}{2} (h_x)^2 + \dot{W}$$

where \dot{W} = Gaussian space-time white noise.

Initial height $h(0, x) =$ two-sided Brownian motion for $x \in \mathbb{R}$.

$Z = \exp(-h)$ satisfies $Z_t = \frac{1}{2} Z_{xx} - Z \dot{W}$ that can be solved.
Hopf-Cole solution to KPZ equation

KPZ eqn for height function $h(t, x)$ of a 1+1 dim interface:

$$h_t = \frac{1}{2} h_{xx} - \frac{1}{2} (h_x)^2 + \dot{W}$$

where $\dot{W} = $ Gaussian space-time white noise.

Initial height $h(0, x) = $ two-sided Brownian motion for $x \in \mathbb{R}$.

$Z = \exp(-h)$ satisfies $Z_t = \frac{1}{2} Z_{xx} - Z \dot{W}$ that can be solved.

Define $h = -\log Z$, the **Hopf-Cole solution** of KPZ.
Hopf-Cole solution to KPZ equation

KPZ eqn for height function $h(t, x)$ of a 1+1 dim interface:

$$h_t = \frac{1}{2} h_{xx} - \frac{1}{2} (h_x)^2 + \dot{W}$$

where $\dot{W} = \text{Gaussian space-time white noise}$.

Initial height $h(0, x) = \text{two-sided Brownian motion for } x \in \mathbb{R}$.

$Z = \exp(-h)$ satisfies $Z_t = \frac{1}{2} Z_{xx} - Z \dot{W}$ that can be solved.

Define $h = -\log Z$, the **Hopf-Cole solution** of KPZ.

Bertini-Giacomin (1997): h can be obtained as a weak limit via a smoothing and renormalization of KPZ.
$\zeta_\varepsilon(t,x)$ height process of weakly asymmetric simple exclusion s.t.

$$\zeta_\varepsilon(x + 1) - \zeta_\varepsilon(x) = \pm 1$$
WASEP connection

\(\zeta_\varepsilon(t,x) \) height process of weakly asymmetric simple exclusion s.t.

\[
\zeta_\varepsilon(x + 1) - \zeta_\varepsilon(x) = \pm 1
\]
WASEP connection

Jumps:

\[
\zeta_\varepsilon(x) \rightarrow \begin{cases}
\zeta_\varepsilon(x) + 2 & \text{with rate } \frac{1}{2} + \sqrt{\varepsilon} \text{ if } \zeta_\varepsilon(x) \text{ is a local min} \\
\zeta_\varepsilon(x) - 2 & \text{with rate } \frac{1}{2} \text{ if } \zeta_\varepsilon(x) \text{ is a local max}
\end{cases}
\]
WASEP connection

Jumps:

\[\zeta_\varepsilon(x) \longrightarrow \begin{cases}
\zeta_\varepsilon(x) + 2 & \text{with rate } \frac{1}{2} + \sqrt{\varepsilon} \text{ if } \zeta_\varepsilon(x) \text{ is a local min} \\
\zeta_\varepsilon(x) - 2 & \text{with rate } \frac{1}{2} \text{ if } \zeta_\varepsilon(x) \text{ is a local max}
\end{cases} \]

Initially: \[\zeta_\varepsilon(0, x + 1) - \zeta_\varepsilon(0, x) = \pm 1 \quad \text{with probab } \frac{1}{2}. \]
WASEP connection

Jumps:

\[
\zeta_\varepsilon(x) \rightarrow \begin{cases}
\zeta_\varepsilon(x) + 2 & \text{with rate } \frac{1}{2} + \sqrt{\varepsilon} \text{ if } \zeta_\varepsilon(x) \text{ is a local min} \\
\zeta_\varepsilon(x) - 2 & \text{with rate } \frac{1}{2} \text{ if } \zeta_\varepsilon(x) \text{ is a local max}
\end{cases}
\]

Initially:

\[
\zeta_\varepsilon(0, x+1) - \zeta_\varepsilon(0, x) = \pm 1 \text{ with probab } \frac{1}{2}.
\]

\[
h_\varepsilon(t, x) = \varepsilon^{1/2} \left(\zeta_\varepsilon(\varepsilon^{-2} t, [\varepsilon^{-1} x]) - \nu_\varepsilon t \right)
\]
WASEP connection

Jumps:

\[
\zeta_\varepsilon(x) \rightarrow \begin{cases}
\zeta_\varepsilon(x) + 2 & \text{with rate } \frac{1}{2} + \sqrt{\varepsilon} \text{ if } \zeta_\varepsilon(x) \text{ is a local min} \\
\zeta_\varepsilon(x) - 2 & \text{with rate } \frac{1}{2} \text{ if } \zeta_\varepsilon(x) \text{ is a local max}
\end{cases}
\]

Initially: \(\zeta_\varepsilon(0, x + 1) - \zeta_\varepsilon(0, x) = \pm 1 \) with probab \(\frac{1}{2} \).

\[
h_\varepsilon(t, x) = \varepsilon^{1/2} \left(\zeta_\varepsilon(\varepsilon^{-2} t, [\varepsilon^{-1} x]) - \nu_\varepsilon t \right)
\]

Theorem (Bertini-Giacomin 1997) As \(\varepsilon \downarrow 0 \), \(h_\varepsilon \Rightarrow h \)
From coupling arguments for WASEP

\[C_1 t^{2/3} \leq \text{Var}(h_\varepsilon(t,0)) \leq C_2 t^{2/3} \]
Fluctuation bounds

From coupling arguments for WASEP

\[C_1 t^{2/3} \leq \text{Var}(h_\varepsilon(t,0)) \leq C_2 t^{2/3} \]

Theorem (Balázs-Quastel-S) For the Hopf-Cole solution of KPZ,

\[C_1 t^{2/3} \leq \text{Var}(h(t,0)) \leq C_2 t^{2/3} \]
Fluctuation bounds

From coupling arguments for WASEP

\[C_1 t^{2/3} \leq \text{Var}(h_\varepsilon(t,0)) \leq C_2 t^{2/3} \]

Theorem (Balázs-Quastel-S) For the Hopf-Cole solution of KPZ,

\[C_1 t^{2/3} \leq \text{Var}(h(t,0)) \leq C_2 t^{2/3} \]

Lower bound comes from control of rescaled correlations

\[S_\varepsilon(t, x) = 4\varepsilon^{-1} \text{Cov}[\eta(\varepsilon^{-2} t, \varepsilon^{-1} x) , \eta(0, 0)] \]
Fluctuation bounds

From coupling arguments for WASEP

\[C_1 t^{2/3} \leq \text{Var}(h_\varepsilon(t,0)) \leq C_2 t^{2/3} \]

Theorem (Balázs-Quastel-S) For the Hopf-Cole solution of KPZ,

\[C_1 t^{2/3} \leq \text{Var}(h(t,0)) \leq C_2 t^{2/3} \]

Lower bound comes from control of rescaled correlations

\[S_\varepsilon(t, x) = 4\varepsilon^{-1} \text{Cov} [\eta(\varepsilon^{-2} t, \varepsilon^{-1} x), \eta(0,0)] \]

where \(\eta(t, x) \in \{0, 1\} \) is the occupation variable of WASEP
Rescaled correlations again:

\[S_\varepsilon(t, x) = 4\varepsilon^{-1} \text{Cov}[\eta(\varepsilon^{-2}t, \varepsilon^{-1}x), \eta(0, 0)] \]
Rescaled correlations again:

\[S_\varepsilon(t, x) = 4\varepsilon^{-1} \text{Cov}[\eta(\varepsilon^{-2} t, \varepsilon^{-1} x), \eta(0, 0)] \]

\[
E\left[\langle \varphi', h_\varepsilon(t) \rangle \langle \psi', h_\varepsilon(0) \rangle \right] = \frac{1}{2} \int \left[\int \varphi \left(\frac{y + x}{2} \right) \psi \left(\frac{y - x}{2} \right) \, dy \right] S_\varepsilon(t, x) \, dx
\]
Rescaled correlations again:

\[S_\varepsilon(t, x) = 4\varepsilon^{-1} \text{Cov} [\eta(\varepsilon^{-2} t, \varepsilon^{-1} x), \eta(0, 0)] \]

\[
E \left[\langle \varphi', h_\varepsilon(t) \rangle \langle \psi', h_\varepsilon(0) \rangle \right] = \frac{1}{2} \int \left[\int \varphi \left(\frac{y + x}{2} \right) \psi \left(\frac{y - x}{2} \right) \, dy \right] S_\varepsilon(t, x) \, dx
\]

Let \(\varepsilon \downarrow 0 \).
Rescaled correlations again:

\[S_\varepsilon(t, x) = 4\varepsilon^{-1} \text{Cov}\left[\eta(\varepsilon^{-2} t, \varepsilon^{-1} x), \eta(0, 0) \right] \]

\[
E\left[\langle \varphi', h_\varepsilon(t) \rangle \langle \psi', h_\varepsilon(0) \rangle \right] = \frac{1}{2} \int \int \varphi\left(\frac{y + x}{2}\right) \psi\left(\frac{y - x}{2}\right) \, dy \right] S_\varepsilon(t, x) \, dx
\]

Let \(\varepsilon \downarrow 0 \). On the left increments of \(h_\varepsilon \) so total control!
Rescaled correlations again:

\[S_\varepsilon(t, x) = 4\varepsilon^{-1} \text{Cov}[\eta(\varepsilon^{-2} t, \varepsilon^{-1} x), \eta(0, 0)] \]

\[
E[\langle \varphi', h_\varepsilon(t) \rangle \langle \psi', h_\varepsilon(0) \rangle] = \frac{1}{2} \int \left[\int \varphi \left(\frac{y + x}{2}\right) \psi \left(\frac{y - x}{2}\right) \, dy \right] S_\varepsilon(t, x) \, dx
\]

Let \(\varepsilon \downarrow 0 \). On the left increments of \(h_\varepsilon \) so total control!

On the right \(S_\varepsilon(t, x) \, dx \Rightarrow S(t, dx) \) with control of moments:

\[
\int |x|^m S_\varepsilon(t, x) \, dx \sim O(t^{2m/3}), \quad 1 \leq m < 3.
\]
Rescaled correlations again:

\[S_\varepsilon(t, x) = 4\varepsilon^{-1} \text{Cov}[\eta(\varepsilon^{-2} t, \varepsilon^{-1} x), \eta(0, 0)] \]

\[
E[\langle \varphi', h_\varepsilon(t) \rangle \langle \psi', h_\varepsilon(0) \rangle] = \frac{1}{2} \int \int \varphi\left(\frac{y + x}{2}\right) \psi\left(\frac{y - x}{2}\right) dy \left[S_\varepsilon(t, x) \right] dx
\]

Let \(\varepsilon \downarrow 0 \). On the left increments of \(h_\varepsilon \) so total control!

On the right \(S_\varepsilon(t, x) dx \Rightarrow S(t, dx) \) with control of moments:

\[
\int |x|^m S_\varepsilon(t, x) dx \sim O(t^{2m/3}), \quad 1 \leq m < 3.
\]

(Second class particle estimate.)
After $\varepsilon \downarrow 0$ limit

$$E\left[\langle \varphi', h(t) \rangle \langle \psi', h(0) \rangle \right] = \frac{1}{2} \int \int \varphi\left(\frac{y+x}{2}\right)\psi\left(\frac{y-x}{2}\right) dy \, S(t, dx)$$
After $\varepsilon \downarrow 0$ limit

\[
E \left[\langle \varphi', h(t) \rangle \langle \psi', h(0) \rangle \right] = \frac{1}{2} \int \int \varphi \left(\frac{y + x}{2} \right) \psi \left(\frac{y - x}{2} \right) dy \ S(t, dx)
\]

From mean zero, stationary h increments

\[
\frac{1}{2} \partial_{xx} \text{Var}(h(t, x)) = S(t, dx) \quad \text{as distributions.}
\]
After $\varepsilon \downarrow 0$ limit

$$E\left[\langle \varphi', h(t) \rangle \langle \psi', h(0) \rangle \right] = \frac{1}{2} \int\int \varphi \left(\frac{y + x}{2} \right) \psi \left(\frac{y - x}{2} \right) dy \, S(t, dx)$$

From mean zero, stationary h increments

$$\frac{1}{2} \partial_{xx} \text{Var}(h(t, x)) = S(t, dx) \quad \text{as distributions.}$$

With some control over tails we arrive at the result:

$$\text{Var}(h(t, 0)) = \int |x| \, S(t, dx) \sim O(t^{2/3}).$$
1+1 dimensional lattice polymer with log-gamma weights

Fix both endpoints.
1+1 dimensional lattice polymer with log-gamma weights

Fix both endpoints.

\[\Pi_{m,n} = \text{set of admissible paths} \]
Fix both endpoints.

\[\Pi_{m,n} = \text{set of admissible paths} \]

Independent weights \[Y_{i,j} = e^{\omega(i,j)} \]
1+1 dimensional lattice polymer with log-gamma weights

Fix both endpoints.

\[\Pi_{m,n} = \text{set of admissible paths} \]

independent weights \(Y_{i,j} = e^{\omega(i,j)} \)

environment \((Y_{i,j} : (i,j) \in \mathbb{Z}_+^2) \)
Fix both endpoints.

\[\Pi_{m,n} = \text{set of admissible paths} \]

independent weights \(Y_{i,j} = e^{\omega(i,j)} \)

environment \((Y_{i,j} : (i,j) \in \mathbb{Z}_+^2) \)

\[Z_{m,n} = \sum_{x} \prod_{k=1}^{m+n} Y_{x_k} \]
1+1 dimensional lattice polymer with log-gamma weights

Fix both endpoints.

\[\prod_{m,n} = \text{set of admissible paths} \]

independent weights \(Y_{i,j} = e^{\omega(i,j)} \)

environment \((Y_{i,j} : (i,j) \in \mathbb{Z}_+^2) \)

\[Z_{m,n} = \sum_{x} \prod_{k=1}^{m+n} Y_{x_k} \]

quenched measure \(Q_{m,n}(x.) = Z_{m,n}^{-1} \prod_{k=1}^{m+n} Y_{x_k} \)

averaged measure \(P_{m,n}(x.) = \mathbb{E} Q_{m,n}(x.) \)
Weight distributions

- Parameters \(0 < \theta < \mu\).
Weight distributions

- Parameters $0 < \theta < \mu$.
- **Bulk weights** $Y_{i,j}$ for $i, j \in \mathbb{N}$
Weight distributions

- Parameters $0 < \theta < \mu$.
- **Bulk weights** $Y_{i,j}$ for $i, j \in \mathbb{N}$
- **Boundary weights** $U_{i,0} = Y_{i,0}$ and $V_{0,j} = Y_{0,j}$.
Weight distributions

- Parameters \(0 < \theta < \mu\).

- **Bulk weights** \(Y_{i,j}\) for \(i,j \in \mathbb{N}\)

- **Boundary weights** \(U_{i,0} = Y_{i,0}\) and \(V_{0,j} = Y_{0,j}\).
Weight distributions

- Parameters $0 < \theta < \mu$.
- **Bulk weights** $Y_{i,j}$ for $i, j \in \mathbb{N}$
- **Boundary weights** $U_{i,0} = Y_{i,0}$ and $V_{0,j} = Y_{0,j}$.

\[
\begin{align*}
U^{-1}_{i,0} &\sim \text{Gamma}(\theta) \\
V^{-1}_{0,j} &\sim \text{Gamma}(\mu - \theta) \\
Y^{-1}_{i,j} &\sim \text{Gamma}(\mu)
\end{align*}
\]
Weight distributions

- Parameters $0 < \theta < \mu$.
- **Bulk weights** $Y_{i,j}$ for $i, j \in \mathbb{N}$
- **Boundary weights** $U_{i,0} = Y_{i,0}$ and $V_{0,j} = Y_{0,j}$.

\[U_{i,0}^{-1} \sim \text{Gamma}(\theta) \]
\[V_{0,j}^{-1} \sim \text{Gamma}(\mu - \theta) \]
\[Y_{i,j}^{-1} \sim \text{Gamma}(\mu) \]

- Gamma(θ) density: $\Gamma(\theta)^{-1}x^{\theta-1}e^{-x}$ on \mathbb{R}_+
Weight distributions

- Parameters $0 < \theta < \mu$.
- **Bulk weights** $Y_{i,j}$ for $i, j \in \mathbb{N}$
- **Boundary weights** $U_{i,0} = Y_{i,0}$ and $V_{0,j} = Y_{0,j}$.

\[
\begin{align*}
U_{i,0}^{-1} & \sim \text{Gamma}(\theta) \\
V_{0,j}^{-1} & \sim \text{Gamma}(\mu - \theta) \\
Y_{i,j}^{-1} & \sim \text{Gamma}(\mu)
\end{align*}
\]

- Gamma(θ) density: $\Gamma(\theta)^{-1} x^{\theta-1} e^{-x}$ on \mathbb{R}_+
- $\Psi_n(s) = \left(d^{n+1} / ds^{n+1} \right) \log \Gamma(s)$
Weight distributions

- Parameters $0 < \theta < \mu$.
- Bulk weights $Y_{i,j}$ for $i,j \in \mathbb{N}$
- Boundary weights $U_{i,0} = Y_{i,0}$ and $V_{0,j} = Y_{0,j}$.

\[
\begin{align*}
U_{i,0}^{-1} &\sim \text{Gamma}(\theta) \\
V_{0,j}^{-1} &\sim \text{Gamma}(\mu - \theta) \\
Y_{i,j}^{-1} &\sim \text{Gamma}(\mu)
\end{align*}
\]

- Gamma(θ) density: $\Gamma(\theta)^{-1}x^{\theta-1}e^{-x}$ on \mathbb{R}_+
- $\Psi_n(s) = (d^{n+1}/ds^{n+1})\log \Gamma(s)$
- $\mathbb{E}(\log U) = -\Psi_0(\theta)$ and $\text{Var}(\log U) = \Psi_1(\theta)$
Variance bounds for log Z

With $0 < \theta < \mu$ fixed and $N \uparrow \infty$ assume

$$|m - N\psi_1(\mu - \theta)| \leq CN^{2/3} \quad \text{and} \quad |n - N\psi_1(\theta)| \leq CN^{2/3} \quad (1)$$
With $0 < \theta < \mu$ fixed and $N \rightarrow \infty$ assume

$$|m - N\psi_1(\mu - \theta)| \leq CN^{2/3} \quad \text{and} \quad |n - N\psi_1(\theta)| \leq CN^{2/3} \quad (1)$$

Theorem

For (m, n) as in (1), $C_1 N^{2/3} \leq \text{Var}(\log Z_{m,n}) \leq C_2 N^{2/3}$.

Variance bounds for log Z

With $0 < \theta < \mu$ fixed and $N \to \infty$ assume

$$ |m - N\psi_1(\mu - \theta)| \leq CN^{2/3} \quad \text{and} \quad |n - N\psi_1(\theta)| \leq CN^{2/3} \quad (1) $$

Theorem

For (m, n) as in (1), $C_1 N^{2/3} \leq \text{Var}(\log Z_{m,n}) \leq C_2 N^{2/3}$.

Theorem

Suppose $n = \Psi_1(\theta)N$ and $m = \Psi_1(\mu - \theta)N + \gamma N^\alpha$ with $\gamma > 0$, $\alpha > 2/3$. Then

$$ N^{-\alpha/2} \left\{ \log Z_{m,n} - \mathbb{E}(\log Z_{m,n}) \right\} \Rightarrow \mathcal{N}(0, \gamma \Psi_1(\theta)) $$
Fluctuation bounds for path

\(v_0(j) = \) leftmost, \(v_1(j) = \) rightmost point of \(x \). on horizontal line:

\[
\begin{align*}
v_0(j) &= \min \{ i \in \{0, \ldots, m\} : \exists k : x_k = (i, j) \} \\
v_1(j) &= \max \{ i \in \{0, \ldots, m\} : \exists k : x_k = (i, j) \}
\end{align*}
\]
Fluctuation bounds for path

\(v_0(j) = \text{leftmost}, \ v_1(j) = \text{rightmost point of } x. \text{ on horizontal line:} \)

\[
\begin{align*}
v_0(j) &= \min\{i \in \{0, \ldots, m\} : \exists k : x_k = (i, j)\} \\
v_1(j) &= \max\{i \in \{0, \ldots, m\} : \exists k : x_k = (i, j)\}
\end{align*}
\]

Theorem

Assume \((m, n)\) as previously and \(0 < \tau < 1\). Then

(a) \(P\left\{ v_0(\lfloor \tau n \rfloor) < \tau m - bN^{2/3} \text{ or } v_1(\lfloor \tau n \rfloor) > \tau m + bN^{2/3} \right\} \leq \frac{C}{b^3} \)

(b) \(\forall \varepsilon > 0 \ \exists \delta > 0 \text{ such that} \)

\[
\lim_{N \to \infty} P\left\{ \exists k \text{ such that } |x_k - (\tau m, \tau n)| \leq \delta N^{2/3} \right\} \leq \varepsilon.
\]
Results for log-gamma polymer summarized

With reciprocals of gammas for weights, both endpoints of the polymer fixed and the right boundary conditions on the axes, we have identified the one-dimensional exponents

\[\zeta = \frac{2}{3} \quad \text{and} \quad \chi = \frac{1}{3}. \]
Results for log-gamma polymer summarized

With reciprocals of gammas for weights, both endpoints of the polymer fixed and the right boundary conditions on the axes, we have identified the one-dimensional exponents

\[\zeta = \frac{2}{3} \quad \text{and} \quad \chi = \frac{1}{3}. \]

Next step is to

- eliminate the boundary conditions and
- consider polymers with fixed length and free endpoint
Results for log-gamma polymer summarized

With reciprocals of gammas for weights, both endpoints of the polymer fixed and the right boundary conditions on the axes, we have identified the one-dimensional exponents

\[\zeta = \frac{2}{3} \quad \text{and} \quad \chi = \frac{1}{3}. \]

Next step is to
- eliminate the boundary conditions and
- consider polymers with fixed length and free endpoint

In both scenarios we have the upper bounds for both log Z and the path. But currently do not have the lower bounds.
Results for log-gamma polymer summarized

With reciprocals of gammas for weights, both endpoints of the polymer fixed and the right boundary conditions on the axes, we have identified the one-dimensional exponents

\[\zeta = 2/3 \quad \text{and} \quad \chi = 1/3. \]

Next step is to

- eliminate the boundary conditions and
- consider polymers with fixed length and free endpoint

In both scenarios we have the upper bounds for both \(\log Z \) and the path. But currently do not have the lower bounds.

Next some key points of the proof.
Burke property for log-gamma polymer with boundary

Given initial weights \((i, j \in \mathbb{N})\):

\[
U_{i,0}^{-1} \sim \text{Gamma}(\theta), \quad V_{0,j}^{-1} \sim \text{Gamma}(\mu - \theta)
\]

\[
Y_{i,j}^{-1} \sim \text{Gamma}(\mu)
\]
Burke property for log-gamma polymer with boundary

Given initial weights \((i, j \in \mathbb{N})\):

\[
U_{i,0}^{-1} \sim \text{Gamma}(\theta), \quad V_{0,j}^{-1} \sim \text{Gamma}(\mu - \theta)
\]

\[
Y_{i,j}^{-1} \sim \text{Gamma}(\mu)
\]

Compute \(Z_{m,n}\) for all \((m, n) \in \mathbb{Z}^2_+\) and then define

\[
U_{m,n} = \frac{Z_{m,n}}{Z_{m-1,n}} \quad V_{m,n} = \frac{Z_{m,n}}{Z_{m,n-1}} \quad X_{m,n} = \left(\frac{Z_{m,n}}{Z_{m+1,n}} + \frac{Z_{m,n}}{Z_{m,n+1}} \right)^{-1}
\]
Burke property for log-gamma polymer with boundary

Given initial weights \((i,j \in \mathbb{N})\):

\[
U_{i,0}^{-1} \sim \text{Gamma}(\theta), \quad V_{0,j}^{-1} \sim \text{Gamma}(\mu - \theta) \\
Y_{i,j}^{-1} \sim \text{Gamma}(\mu)
\]

Compute \(Z_{m,n}\) for all \((m, n) \in \mathbb{Z}_+^2\) and then define

\[
U_{m,n} = \frac{Z_{m,n}}{Z_{m-1,n}}, \quad V_{m,n} = \frac{Z_{m,n}}{Z_{m,n-1}}, \quad X_{m,n} = \left(\frac{Z_{m,n}}{Z_{m+1,n}} + \frac{Z_{m,n}}{Z_{m,n+1}}\right)^{-1}
\]

For an undirected edge \(f\):

\[
T_f = \begin{cases}
U_x & f = \{x - e_1, x\} \\
V_x & f = \{x - e_2, x\}
\end{cases}
\]
• down-right path \((z_k)\) with edges \(f_k = \{z_{k-1}, z_k\}, \ k \in \mathbb{Z}\)

• interior points \(\mathcal{I}\) of path \((z_k)\)
down-right path \((z_k)\) with edges \(f_k = \{z_{k-1}, z_k\}, k \in \mathbb{Z}\)

- interior points \(I\) of path \((z_k)\)

Theorem

Variables \(\{T_{f_k}, X_z : k \in \mathbb{Z}, z \in I\}\) are independent with marginals

\[
U^{-1} \sim \text{Gamma}(\theta), \quad V^{-1} \sim \text{Gamma}(\mu - \theta), \quad \text{and} \quad X^{-1} \sim \text{Gamma}(\mu).
\]
down-right path \((z_k)\) with edges \(f_k = \{z_{k-1}, z_k\}, \ k \in \mathbb{Z}\)

- interior points \(\mathcal{I}\) of path \((z_k)\)

Theorem

Variables \(\{T_{f_k}, X_z : k \in \mathbb{Z}, z \in \mathcal{I}\}\) are independent with marginals

\[
U^{-1} \sim \text{Gamma}(\theta), \quad V^{-1} \sim \text{Gamma}(\mu - \theta), \quad \text{and} \quad X^{-1} \sim \text{Gamma}(\mu).
\]

“Burke property” because the analogous property for last-passage is a generalization of Burke’s Theorem for M/M/1 queues, via the last-passage representation of M/M/1 queues in series.
Proof of Burke property

Induction on I by flipping a growth corner:

\[
U' = Y(1 + U/V) \quad V' = Y(1 + V/U) \\
X = (U^{-1} + V^{-1})^{-1}
\]
Proof of Burke property

Induction on I by flipping a growth corner:

Lemma. Given that (U, V, Y) are independent positive r.v.'s, $(U', V', X) \overset{d}= (U, V, Y)$ iff (U, V, Y) have the gamma distr's.

Proof. “if” part by computation, “only if” part from a characterization of gamma due to Lukacs (1955). □
Proof of Burke property

Induction on \(I \) by flipping a growth corner:

\[
\begin{align*}
U' &= Y(1 + U/V) & V' &= Y(1 + V/U) \\
X &= (U^{-1} + V^{-1})^{-1}
\end{align*}
\]

Lemma. Given that \((U, V, Y)\) are independent positive r.v.’s, \((U', V', X) \overset{d}{=} (U, V, Y)\) iff \((U, V, Y)\) have the gamma distr’s.

Proof. “if” part by computation, “only if” part from a characterization of gamma due to Lukacs (1955). \(\square\)

This gives all \((z_k)\) with finite \(I \). General case follows.
Proof of off-characteristic CLT

Recall that

\[
\begin{align*}
 n &= \psi_1(\theta)N \\
 m &= \psi_1(\mu - \theta)N + \gamma N^\alpha
\end{align*}
\]

\(\gamma > 0, \; \alpha > 2/3.\)
Proof of off-characteristic CLT

Recall that
\[
\begin{align*}
 n &= \Psi_1(\theta) N \\
 m &= \Psi_1(\mu - \theta) N + \gamma N^\alpha
\end{align*}
\]
\(\gamma > 0, \ \alpha > 2/3.\)

Set \(m_1 = \lfloor \Psi_1(\mu - \theta) N \rfloor.\)
Proof of off-characteristic CLT

Recall that
\[
\begin{aligned}
& n = \Psi_1(\theta)N \\
& m = \Psi_1(\mu - \theta)N + \gamma N^\alpha
\end{aligned}
\]

Set \(m_1 = \lfloor \Psi_1(\mu - \theta)N \rfloor \). Since \(Z_{m,n} = Z_{m_1,n} \cdot \prod_{i=m_1+1}^{m} U_{i,n} \)
Proof of off-characteristic CLT

Recall that
\[
\begin{align*}
 n &= \Psi_1(\theta)N \\
 m &= \Psi_1(\mu - \theta)N + \gamma N^\alpha
\end{align*}
\]
\[\gamma > 0, \ \alpha > 2/3.\]

Set \(m_1 = \lfloor \Psi_1(\mu - \theta)N \rfloor\). Since \(Z_{m,n} = Z_{m_1,n} \cdot \prod_{i=m_1+1}^m U_{i,n}\)

\[
N^{-\alpha/2} \log Z_{m,n} = N^{-\alpha/2} \log Z_{m_1,n} + N^{-\alpha/2} \sum_{i=m_1+1}^m \log U_{i,n}
\]

First term on the right is \(O(N^{1/3-\alpha/2}) \to 0\). Second term is a sum of order \(N^\alpha\) i.i.d. terms. \(\square\)
Variance identity

Exit point of path from x-axis

$$\xi_x = \max\{k \geq 0 : x_i = (i, 0) \text{ for } 0 \leq i \leq k\}$$
Variance identity

Exit point of path from \(x \)-axis

\[\xi_x = \max\{ k \geq 0 : x_i = (i, 0) \text{ for } 0 \leq i \leq k \} \]

For \(\theta, x > 0 \) define positive function

\[L(\theta, x) = \int_0^x (\psi_0(\theta) - \log y) x^{-\theta} y^{\theta-1} e^{x-y} \, dy \]
Variance identity

Exit point of path from x-axis

$$\xi_x = \max\{k \geq 0 : x_i = (i, 0) \text{ for } 0 \leq i \leq k\}$$

For $\theta, x > 0$ define positive function

$$L(\theta, x) = \int_0^x (\Psi_0(\theta) - \log y) x^{-\theta} y^{\theta-1} e^{x-y} dy$$

Theorem. For the model with boundary,

$$\text{Var}[\log Z_{m,n}] = n\Psi_1(\mu - \theta) - m\Psi_1(\theta) + 2 E_{m,n} \left[\sum_{i=1}^{\xi_x} L(\theta, Y_{i,0}^{-1}) \right]$$
Variance identity, sketch of proof

\[N = \log Z_{m,n} - \log Z_{0,n} \]

\[W = \log Z_{0,n} \]

\[S = \log Z_{m,0} \]

\[E = \log Z_{m,n} - \log Z_{m,0} \]
Variance identity, sketch of proof

\[N = \log Z_{m,n} - \log Z_{0,n} \]
\[W = \log Z_{0,n} \]
\[S = \log Z_{m,0} \]
\[E = \log Z_{m,n} - \log Z_{m,0} \]

\[\var[\log Z_{m,n}] = \var(W + N) \]
\[= \var(W) + \var(N) + 2 \cov(W, N) \]
\[= \var(W) + \var(N) + 2 \cov(S + E - N, N) \]
\[= \var(W) - \var(N) + 2 \cov(S, N) \quad (E, N \ind) \]
\[= n\psi_1(\mu - \theta) - m\psi_1(\theta) + 2 \cov(S, N). \]
To differentiate w.r.t. parameter θ of S while keeping W fixed, introduce a separate parameter $\rho (= \mu - \theta)$ for W.

$$-\text{Cov}(S, N) = \frac{\partial}{\partial \theta} \mathbb{E}(N)$$
To differentiate w.r.t. parameter θ of S while keeping W fixed, introduce a separate parameter $\rho \ (= \mu - \theta)$ for W.

$$-\text{Cov}(S, N) = \frac{\partial}{\partial \theta} \mathbb{E}(N) = \tilde{\mathbb{E}} \left[\frac{\partial}{\partial \theta} \log Z_{m,n}(\theta) \right]$$
To differentiate w.r.t. parameter θ of S while keeping W fixed, introduce a separate parameter $\rho (= \mu - \theta)$ for W.

$$-\text{Cov}(S, N) = \frac{\partial}{\partial \theta} E(N) = \tilde{E}\left[\frac{\partial}{\partial \theta} \log Z_{m,n}(\theta) \right]$$

when $Z_{m,n}(\theta) = \sum_{x \in \Pi_{m,n}} \prod_{i=1}^{\xi_x} H_{\theta}(\eta_i)^{-1} \cdot \prod_{k=\xi_x+1}^{m+n} Y_{x_k}$ with

$$\eta_i \sim \text{IID Unif}(0, 1), \quad H_{\theta}(\eta) = F_{\theta}^{-1}(\eta), \quad F_{\theta}(x) = \int_0^x \frac{y^{\theta-1}e^{-y}}{\Gamma(\theta)} \, dy.$$
To differentiate w.r.t. parameter θ of S while keeping W fixed, introduce a separate parameter $\rho (= \mu - \theta)$ for W.

$$-\text{Cov}(S, N) = \frac{\partial}{\partial \theta} \mathbb{E}(N) = \widetilde{\mathbb{E}}\left[\frac{\partial}{\partial \theta} \log Z_{m,n}(\theta) \right]$$

when

$$Z_{m,n}(\theta) = \sum_{x \in \Pi_{m,n}} \prod_{i=1}^{\xi_x} H_{\theta}(\eta_i)^{-1} \cdot \prod_{k=\xi_x+1}^{m+n} Y_{x_k} \text{ with}$$

$$\eta_i \sim \text{IID Unif}(0, 1), \quad H_{\theta}(\eta) = F_{\theta}^{-1}(\eta), \quad F_{\theta}(x) = \int_0^x y^{\theta-1} e^{-y} \frac{1}{\Gamma(\theta)} \, dy.$$
Together:

$$\text{Var}[\log Z_{m,n}] = n\Psi_1(\mu - \theta) - m\Psi_1(\theta) + 2\text{Cov}(S, N)$$

$$= n\Psi_1(\mu - \theta) - m\Psi_1(\theta) + 2E_{m,n}\left[\sum_{i=1}^{\xi_x} L(\theta, Y_{i,0}^{-1})\right].$$

This was the claimed formula. \square
The argument develops an inequality that controls both $\log Z$ and ξ_x simultaneously. Introduce an auxiliary parameter $\lambda = \theta - bu/N$.
Sketch of upper bound proof

The argument develops an inequality that controls both \(\log Z \) and \(\xi_x \) simultaneously. Introduce an auxiliary parameter \(\lambda = \theta - bu/N \). The weight of a path \(x \) such that \(\xi_x > 0 \) satisfies

\[
W(\theta) = \prod_{i=1}^{\xi_x} H_\theta(\eta_i)^{-1} \cdot \prod_{k=\xi_x+1}^{m+n} Y_{x_k}
\]
Sketch of upper bound proof

The argument develops an inequality that controls both $\log Z$ and ξ_x simultaneously. Introduce an auxiliary parameter $\lambda = \theta - bu/N$. The weight of a path x, such that $\xi_x > 0$ satisfies

$$W(\theta) = \prod_{i=1}^{\xi_x} H_\theta(\eta_i)^{-1} \cdot \prod_{k=\xi_x+1}^{m+n} Y_{x_k} = W(\lambda) \cdot \prod_{i=1}^{\xi_x} \frac{H_\lambda(\eta_i)}{H_\theta(\eta_i)}.$$
Sketch of upper bound proof

The argument develops an inequality that controls both log Z and ξ_x simultaneously. Introduce an auxiliary parameter $\lambda = \theta - bu/N$. The weight of a path x, such that $\xi_x > 0$ satisfies

$$W(\theta) = \prod_{i=1}^{m+n} H_\theta(\eta_i)^{-1} \cdot \prod_{k=\xi_x+1}^{\xi_x} Y_{x_k} = W(\lambda) \cdot \prod_{i=1}^{\xi_x} \frac{H_\lambda(\eta_i)}{H_\theta(\eta_i)}.$$

Since $H_\lambda(\eta) \leq H_\theta(\eta)$,

$$Q^{\theta,\omega}\{\xi_x \geq u\} = \frac{1}{Z(\theta)} \sum_x 1\{\xi_x \geq u\} W(\theta) \leq \frac{Z(\lambda)}{Z(\theta)} \cdot \prod_{i=1}^{\lfloor u \rfloor} \frac{H_\lambda(\eta_i)}{H_\theta(\eta_i)}.$$
For $1 \leq u \leq \delta N$ and $0 < s < \delta$,

$$\mathbb{P}\left[Q^\omega \{ \xi_x \geq u \} \geq e^{-su^2/N} \right] \leq \mathbb{P}\left\{ \prod_{i=1}^{\lfloor u \rfloor} \frac{H_{\lambda}(\eta_i)}{H_{\theta}(\eta_i)} \geq \alpha \right\}$$

$$+ \mathbb{P}\left(\frac{Z(\lambda)}{Z(\theta)} \geq \alpha^{-1} e^{-su^2/N} \right).$$
For $1 \leq u \leq \delta N$ and $0 < s < \delta$,

$$\mathbb{P}[Q^\omega \{ \xi_x \geq u \} \geq e^{-su^2/N}] \leq \mathbb{P}\left\{ \prod_{i=1}^{[u]} \frac{H_\lambda(\eta_i)}{H_\theta(\eta_i)} \geq \alpha \right\}$$

$$+ \mathbb{P}\left(\frac{Z(\lambda)}{Z(\theta)} \geq \alpha^{-1} e^{-su^2/N} \right).$$

Choose α right. Bound these probabilities with Chebychev which brings $\text{Var}(\log Z)$ into play. In the characteristic rectangle $\text{Var}(\log Z)$ can be bounded by $E(\xi_x)$. The end result is this inequality:

$$\mathbb{P}[Q^\omega \{ \xi_x \geq u \} \geq e^{-su^2/N}] \leq \frac{CN^2}{u^4} E(\xi_x) + \frac{CN^2}{u^3}$$
For $1 \leq u \leq \delta N$ and $0 < s < \delta$,

$$
P\left[Q^\omega \{ \xi_x \geq u \} \geq e^{-su^2/N} \right] \leq P \left\{ \prod_{i=1}^{[u]} \frac{H_\lambda(\eta_i)}{H_\theta(\eta_i)} \geq \alpha \right\}
+ P \left(\frac{Z(\lambda)}{Z(\theta)} \geq \alpha^{-1} e^{-su^2/N} \right).$$

Choose α right. Bound these probabilities with Chebychev which brings $\text{Var}(\log Z)$ into play. In the characteristic rectangle $\text{Var}(\log Z)$ can be bounded by $E(\xi_x)$. The end result is this inequality:

$$
P\left[Q^\omega \{ \xi_x \geq u \} \geq e^{-su^2/N} \right] \leq \frac{CN^2}{u^4} E(\xi_x) + \frac{CN^2}{u^3}$$

Handle $u \geq \delta N$ with large deviation estimates. In the end, integration gives the moment bounds.
For $1 \leq u \leq \delta N$ and $0 < s < \delta$,

\[
\mathbb{P}\left[Q^\omega \{ \xi_x \geq u \} \geq e^{-su^2/N} \right] \leq \mathbb{P}\left\{ \prod_{i=1}^{\lfloor u \rfloor} \frac{H_\lambda(\eta_i)}{H_\theta(\eta_i)} \geq \alpha \right\} + \mathbb{P}\left(\frac{Z(\lambda)}{Z(\theta)} \geq \alpha^{-1} e^{-su^2/N} \right).
\]

Choose α right. Bound these probabilities with Chebychev which brings $\text{Var}(\log Z)$ into play. In the characteristic rectangle $\text{Var}(\log Z)$ can be bounded by $E(\xi_x)$. The end result is this inequality:

\[
\mathbb{P}\left[Q^\omega \{ \xi_x \geq u \} \geq e^{-su^2/N} \right] \leq \frac{CN^2}{u^4} E(\xi_x) + \frac{CN^2}{u^3}
\]

Handle $u \geq \delta N$ with large deviation estimates. In the end, integration gives the moment bounds. **END.**
Polymer in a Brownian environment

Environment: independent Brownian motions B_1, B_2, \ldots, B_n

Partition function (without boundary conditions):

$$Z_{n,t}(\beta) = \int_{0 < s_1 < \cdots < s_{n-1} < t} \exp\left[\beta \left(B_1(s_1) + B_2(s_2) - B_2(s_1) + B_3(s_3) - B_3(s_2) + \cdots + B_n(t) - B_n(s_{n-1}) \right) \right] ds_1, s_{n-1}$$