Scaling exponents for certain 1+1 dimensional directed polymers

Timo Seppäläinen

Department of Mathematics
University of Wisconsin-Madison

2010
1 Introduction

2 KPZ equation

3 Log-gamma polymer
Directed polymer in a random environment

simple random walk path \((x(t), t), t \in \mathbb{Z}_+\)

space \(\mathbb{Z}^d\)

time \(\mathbb{N}\)
Directed polymer in a random environment

simple random walk path \((x(t), t)\), \(t \in \mathbb{Z}_+\)

space-time environment \(\{\omega(x, t) : x \in \mathbb{Z}^d, t \in \mathbb{N}\}\)
Directed polymer in a random environment

Simple random walk path \((x(t), t), t \in \mathbb{Z}_+\)

Space-time environment \(\{\omega(x, t) : x \in \mathbb{Z}^d, t \in \mathbb{N}\}\)

Inverse temperature \(\beta > 0\)

Quenched probability measure on paths

\[
Q_n\{x(\cdot)\} = \frac{1}{Z_n} \exp \left\{ \beta \sum_{t=1}^{n} \omega(x(t), t) \right\}
\]
Directed polymer in a random environment

- simple random walk path \((x(t), t), t \in \mathbb{Z}_+\)
- space-time environment \(\{\omega(x, t): x \in \mathbb{Z}^d, t \in \mathbb{N}\}\)
- inverse temperature \(\beta > 0\)

quenched probability measure on paths
\[
Q_n\{x(\cdot)\} = \frac{1}{Z_n} \exp\left\{\beta \sum_{t=1}^{n} \omega(x(t), t)\right\}
\]

partition function
\[
Z_n = \sum_{x(\cdot)} \exp\left\{\beta \sum_{t=1}^{n} \omega(x(t), t)\right\}
\]
(summed over all \(n\)-paths)
Directed polymer in a random environment

simple random walk path \((x(t), t), t \in \mathbb{Z}_+\)

space-time environment \(\{\omega(x, t) : x \in \mathbb{Z}^d, t \in \mathbb{N}\}\)

inverse temperature \(\beta > 0\)

quenched probability measure on paths

\[
Q_n\{x(\cdot)\} = \frac{1}{Z_n} \exp\left\{\beta \sum_{t=1}^{n} \omega(x(t), t)\right\}
\]

partition function

\[
Z_n = \sum_{x(\cdot)} \exp\left\{\beta \sum_{t=1}^{n} \omega(x(t), t)\right\}
\]

(summed over all \(n\)-paths)

\(\mathbb{P}\) probability distribution on \(\omega\), often \(\{\omega(x, t)\}\) i.i.d.
General question: Behavior of model as $\beta > 0$ and dimension d vary. Especially whether $x(\cdot)$ is diffusive or not, that is, does it scale like standard RW.
General question: Behavior of model as $\beta > 0$ and dimension d vary. Especially whether $x(\cdot)$ is diffusive or not, that is, does it scale like standard RW.

Early results: diffusive behavior for $d \geq 3$ and small $\beta > 0$:

1988 Imbrie and Spencer: $n^{-1}E^Q(|x(n)|^2) \to c$ \mathbb{P}-a.s.
1989 Bolthausen: quenched CLT for $n^{-1/2}x(n)$.
General question: Behavior of model as $\beta > 0$ and dimension d vary. Especially whether $x(\cdot)$ is diffusive or not, that is, does it scale like standard RW.

Early results: diffusive behavior for $d \geq 3$ and small $\beta > 0$:

1988 Imbrie and Spencer: $n^{-1}E^Q(|x(n)|^2) \to c$ \mathbb{P}-a.s.

1989 Bolthausen: quenched CLT for $n^{-1/2}x(n)$.

In the opposite direction: if $d = 1, 2$, or $d \geq 3$ and β large enough, then $\exists c > 0$ s.t.

$$\lim_{n \to \infty} \max_z Q_n\{x(n) = z\} \geq c \quad \mathbb{P}$-a.s.$$

(Comets, Shiga, Yoshida 2003)
Definition of scaling exponents ζ and χ

Fluctuations described by two scaling exponents:
Definition of scaling exponents ζ and χ

Fluctuations described by two scaling exponents:

- Fluctuations of the path $\{x(t) : 0 \leq t \leq n\}$ are of order n^ζ.
Definition of scaling exponents ζ and χ

Fluctuations described by two scaling exponents:

- Fluctuations of the path $\{x(t) : 0 \leq t \leq n\}$ are of order n^ζ.

- Fluctuations of $\log Z_n$ are of order n^χ.
Definition of scaling exponents ζ and χ

Fluctuations described by two scaling exponents:

- Fluctuations of the path $\{x(t) : 0 \leq t \leq n\}$ are of order n^{ζ}.

- Fluctuations of $\log Z_n$ are of order n^{χ}.

- Conjecture for $d = 1$: $\zeta = 2/3$ and $\chi = 1/3$.
Definition of scaling exponents ζ and χ

Fluctuations described by two scaling exponents:

- Fluctuations of the path $\{x(t) : 0 \leq t \leq n\}$ are of order n^{ζ}.
- Fluctuations of $\log Z_n$ are of order n^{χ}.
- Conjecture for $d = 1$: $\zeta = 2/3$ and $\chi = 1/3$.

Our results: these exact exponents for certain 1+1 dimensional models with particular weight distributions and boundary conditions.
Earlier results for $d = 1$ exponents

Past rigorous bounds give $3/5 \leq \zeta \leq 3/4$ and $\chi \geq 1/8$:

Earlier results for $d = 1$ exponents

Past rigorous bounds give $3/5 \leq \zeta \leq 3/4$ and $\chi \geq 1/8$:

- Gaussian RW in Gaussian potential: Petermann 2000
 \[\zeta \geq 3/5, \text{ Mejane 2004 } \zeta \leq 3/4 \]
Earlier results for $d = 1$ exponents

Past rigorous bounds give $3/5 \leq \zeta \leq 3/4$ and $\chi \geq 1/8$:

- Gaussian RW in Gaussian potential: Petermann 2000
 $\zeta \geq 3/5$, Mejane 2004 $\zeta \leq 3/4$
Models for which we can show $\zeta = 2/3$ and $\chi = 1/3$

(1) Log-gamma polymer: $\beta = 1$ and $-\log \omega(x, t) \sim \text{Gamma}$, plus appropriate boundary conditions
Models for which we can show $\zeta = 2/3$ and $\chi = 1/3$

(1) Log-gamma polymer: $\beta = 1$ and $-\log \omega(x, t) \sim \text{Gamma}$, plus appropriate boundary conditions

(2) Polymer in a Brownian environment. (Joint with B. Valkó.) Model introduced by O’Connell and Yor 2001.
Models for which we can show $\zeta = 2/3$ and $\chi = 1/3$

(1) Log-gamma polymer: $\beta = 1$ and $-\log \omega(x, t) \sim \text{Gamma}$, plus appropriate boundary conditions

(2) Polymer in a Brownian environment. (Joint with B. Valkó.) Model introduced by O’Connell and Yor 2001.

(3) Continuum directed polymer, or Hopf-Cole solution of the Kardar-Parisi-Zhang (KPZ) equation with initial height function given by two-sided Brownian motion. (Joint with M. Balázs and J. Quastel.)
Models for which we can show $\zeta = 2/3$ and $\chi = 1/3$

(1) Log-gamma polymer: $\beta = 1$ and $-\log \omega(x, t) \sim \text{Gamma}$, plus appropriate boundary conditions

(2) Polymer in a Brownian environment. (Joint with B. Valkó.) Model introduced by O’Connell and Yor 2001.

(3) Continuum directed polymer, or Hopf-Cole solution of the Kardar-Parisi-Zhang (KPZ) equation with initial height function given by two-sided Brownian motion. (Joint with M. Balázs and J. Quastel.)

Next details on (3), then more details on (1).
Polymer in a Brownian environment

Environment: independent Brownian motions B_1, B_2, \ldots, B_n

Partition function (without boundary conditions):

\[
Z_{n,t}(\beta) = \int_{0<s_1<\cdots<s_{n-1}<t} \exp \left[\beta \left(B_1(s_1) + B_2(s_2) - B_2(s_1) + B_3(s_3) - B_3(s_2) + \cdots + B_n(t) - B_n(s_{n-1}) \right) \right] ds_{1,n-1}
\]
Hopf-Cole solution to KPZ equation

KPZ eqn for height function $h(t,x)$ of a 1+1 dim interface:

$$h_t = \frac{1}{2} h_{xx} - \frac{1}{2} (h_x)^2 + \dot{W}$$

where $\dot{W} = $ Gaussian space-time white noise.
Hopf-Cole solution to KPZ equation

KPZ eqn for height function $h(t, x)$ of a 1+1 dim interface:

$$h_t = \frac{1}{2} h_{xx} - \frac{1}{2} (h_x)^2 + \dot{W}$$

where $\dot{W} = \text{Gaussian space-time white noise}.$

Initial height $h(0, x) = \text{two-sided Brownian motion for } x \in \mathbb{R}.$
Hopf-Cole solution to KPZ equation

KPZ eqn for height function $h(t, x)$ of a 1+1 dim interface:

$$h_t = \frac{1}{2} h_{xx} - \frac{1}{2} (h_x)^2 + \dot{W}$$

where $\dot{W} = $ Gaussian space-time white noise.

Initial height $h(0, x) = $ two-sided Brownian motion for $x \in \mathbb{R}$.

$Z = \exp(-h)$ satisfies $Z_t = \frac{1}{2} Z_{xx} - Z \dot{W}$ that can be solved.
Hopf-Cole solution to KPZ equation

KPZ eqn for height function $h(t, x)$ of a 1+1 dim interface:

$$h_t = \frac{1}{2} h_{xx} - \frac{1}{2} (h_x)^2 + \dot{W}$$

where $\dot{W} = $ Gaussian space-time white noise.

Initial height $h(0, x) =$ two-sided Brownian motion for $x \in \mathbb{R}$.

$Z = \exp(-h)$ satisfies $Z_t = \frac{1}{2} Z_{xx} - Z \dot{W}$ that can be solved.

Define $h = -\log Z$, the **Hopf-Cole solution** of KPZ.
Hopf-Cole solution to KPZ equation

KPZ eqn for height function \(h(t,x) \) of a 1+1 dim interface:

\[
h_t = \frac{1}{2} h_{xx} - \frac{1}{2} (h_x)^2 + \dot{W}
\]

where \(\dot{W} = \) Gaussian space-time white noise.

Initial height \(h(0,x) = \) two-sided Brownian motion for \(x \in \mathbb{R} \).

\(Z = \exp(-h) \) satisfies \(Z_t = \frac{1}{2} Z_{xx} - Z \dot{W} \) that can be solved.

Define \(h = -\log Z \), the **Hopf-Cole solution** of KPZ.

Bertini-Giacomin (1997): \(h \) can be obtained as a weak limit via a smoothing and renormalization of KPZ.
WASEP connection

\(\zeta_\varepsilon(t, x) \) height process of weakly asymmetric simple exclusion s.t.

\[
\zeta_\varepsilon(x + 1) - \zeta_\varepsilon(x) = \pm 1
\]
WASEP connection

\(\zeta_\varepsilon(t, x) \) height process of weakly asymmetric simple exclusion s.t.

\[
\zeta_\varepsilon(x + 1) - \zeta_\varepsilon(x) = \pm 1
\]
WASEP connection

Jumps:

\[
\zeta_\varepsilon(x) \longrightarrow \begin{cases}
\zeta_\varepsilon(x) + 2 & \text{with rate } 1/2 + \sqrt{\varepsilon} \text{ if } \zeta_\varepsilon(x) \text{ is a local min} \\
\zeta_\varepsilon(x) - 2 & \text{with rate } 1/2 \text{ if } \zeta_\varepsilon(x) \text{ is a local max}
\end{cases}
\]
WASEP connection

Jumps:

\[\zeta_\varepsilon(x) \rightarrow \begin{cases}
 \zeta_\varepsilon(x) + 2 & \text{with rate } 1/2 + \sqrt{\varepsilon} \text{ if } \zeta_\varepsilon(x) \text{ is a local min} \\
 \zeta_\varepsilon(x) - 2 & \text{with rate } 1/2 \text{ if } \zeta_\varepsilon(x) \text{ is a local max}
\end{cases} \]

Initially:

\[\zeta_\varepsilon(0, x + 1) - \zeta_\varepsilon(0, x) = \pm 1 \text{ with probab } \frac{1}{2}. \]
Jumps:
\[
\zeta_\varepsilon(x) \rightarrow \begin{cases}
\zeta_\varepsilon(x) + 2 & \text{with rate } 1/2 + \sqrt{\varepsilon} \text{ if } \zeta_\varepsilon(x) \text{ is a local min} \\
\zeta_\varepsilon(x) - 2 & \text{with rate } 1/2 \text{ if } \zeta_\varepsilon(x) \text{ is a local max}
\end{cases}
\]

Initially: \[
\zeta_\varepsilon(0, x + 1) - \zeta_\varepsilon(0, x) = \pm1 \text{ with probab } \frac{1}{2}.
\]

\[
h_\varepsilon(t, x) = \varepsilon^{1/2} \left(\zeta_\varepsilon(\varepsilon^{-2} t, [\varepsilon^{-1} x]) - v_\varepsilon t \right)
\]
WASEP connection

Jumps:

\[\zeta_\varepsilon(x) \rightarrow \begin{cases}
\zeta_\varepsilon(x) + 2 & \text{with rate } 1/2 + \sqrt{\varepsilon} \text{ if } \zeta_\varepsilon(x) \text{ is a local min} \\
\zeta_\varepsilon(x) - 2 & \text{with rate } 1/2 \text{ if } \zeta_\varepsilon(x) \text{ is a local max}
\end{cases} \]

Initially: \[\zeta_\varepsilon(0, x + 1) - \zeta_\varepsilon(0, x) = \pm 1 \text{ with probab } \frac{1}{2}. \]

\[h_\varepsilon(t, x) = \varepsilon^{1/2} (\zeta_\varepsilon(\varepsilon^{-2} t, [\varepsilon^{-1} x]) - v_\varepsilon t) \]

Thm. As \(\varepsilon \downarrow 0 \), \(h_\varepsilon \Rightarrow h \) (Bertini-Giacomin 1997).
Fluctuation bounds

From coupling arguments for WASEP

\[C_1 t^{2/3} \leq \text{Var}(h_\varepsilon(t, 0)) \leq C_2 t^{2/3} \]
Fluctuation bounds

From coupling arguments for WASEP

$$C_1 t^{2/3} \leq \text{Var}(h_\varepsilon(t,0)) \leq C_2 t^{2/3}$$

Thm. (Balázs-Quastel-S) For the Hopf-Cole solution of KPZ,

$$C_1 t^{2/3} \leq \text{Var}(h(t,0)) \leq C_2 t^{2/3}$$
Fluctuation bounds

From coupling arguments for WASEP

\[C_1 t^{2/3} \leq \text{Var}(h_\varepsilon(t,0)) \leq C_2 t^{2/3} \]

Thm. (Balázs-Quastel-S) For the Hopf-Cole solution of KPZ,

\[C_1 t^{2/3} \leq \text{Var}(h(t,0)) \leq C_2 t^{2/3} \]

The lower bound comes from control of rescaled correlations

\[S_\varepsilon(t,x) = \varepsilon^{-1} \text{Cov}[\eta(\varepsilon^{-2} t, \varepsilon^{-1} x), \eta(0,0)] \]
Rescaled correlations:

\[S_\varepsilon(t, x) = \varepsilon^{-1} \text{Cov} \left[\eta(\varepsilon^{-2} t, \varepsilon^{-1} x), \eta(0, 0) \right] \]
Rescaled correlations:

\[S_\varepsilon(t, x) = \varepsilon^{-1} \text{Cov}[\eta(\varepsilon^{-2}t, \varepsilon^{-1}x), \eta(0, 0)] \]

\[S_\varepsilon(t, x) dx \Rightarrow S(t, dx) \text{ with control of moments:} \]

\[\int |x|^m S_\varepsilon(t, x) \, dx \sim O(t^{2m/3}), \quad 1 \leq m < 3. \]

(A second class particle estimate.)
Rescaled correlations:

\[S_\varepsilon(t, x) = \varepsilon^{-1} \text{Cov}[\eta(\varepsilon^{-2}t, \varepsilon^{-1}x), \eta(0, 0)] \]

\[S_\varepsilon(t, x)dx \Rightarrow S(t, dx) \text{ with control of moments:} \]

\[\int |x|^m S_\varepsilon(t, x) dx \sim O(t^{2m/3}), \quad 1 \leq m < 3. \]

(A second class particle estimate.)

\[S(t, dx) = \frac{1}{2} \partial_{xx} \text{Var}(h(t, x)) \text{ as distributions.} \]
Rescaled correlations:

\[S_\varepsilon(t, x) = \varepsilon^{-1} \text{Cov}[\eta(\varepsilon^{-2}t, \varepsilon^{-1}x), \eta(0, 0)] \]

\[S_\varepsilon(t, x) \, dx \Rightarrow S(t, dx) \] with control of moments:

\[\int |x|^m S_\varepsilon(t, x) \, dx \sim O(t^{2m/3}), \quad 1 \leq m < 3. \]

(A second class particle estimate.)

\[S(t, dx) = \frac{1}{2} \partial_{xx} \text{Var}(h(t, x)) \] as distributions.

With some control over tails we arrive at

\[\text{Var}(h(t, 0)) = \int |x| \, S(t, dx) \sim O(t^{2/3}). \]
Polymer in first quadrant with fixed endpoints

We turn the picture 45 degrees. Polymer is an up-right path from $(0,0)$ to (m,n) in \mathbb{Z}^2_+.
Notation

- $\Pi_{m,n} = \{ \text{up-right paths } (x_k) \text{ from } (0,0) \text{ to } (m,n) \}$
Notation

- \(\Pi_{m,n} = \{ \text{up-right paths } (x_k) \text{ from } (0,0) \text{ to } (m,n) \} \)
- \(\text{Fix } \beta = 1. \ Y_{i,j} = e^{\omega(i,j)} \text{ independent.} \)
- \(\text{Environment } (Y_{i,j} : (i,j) \in \mathbb{Z}_+^2) \text{ with distribution } \mathbb{P}. \)
Notation

- \(\Pi_{m,n} = \{ \text{up-right paths } (x_k) \text{ from } (0, 0) \text{ to } (m, n) \} \)

- Fix \(\beta = 1. \) \(Y_{i,j} = e^{\omega(i,j)} \) independent.

- Environment \((Y_{i,j} : (i, j) \in \mathbb{Z}_+^2) \) with distribution \(\mathbb{P} \).

- \(Z_{m,n} = \sum_{x \in \Pi_{m,n}} \prod_{k=1}^{m+n} Y_{x_k} \quad Q_{m,n}(x.) = \frac{1}{Z_{m,n}} \prod_{k=1}^{m+n} Y_{x_k} \)
Notation

- $\Pi_{m,n} = \{ \text{up-right paths } (x_k) \text{ from } (0,0) \text{ to } (m,n) \}$
- Fix $\beta = 1$. $Y_{i,j} = e^{\omega(i,j)}$ independent.
- Environment $\left(Y_{i,j} : (i,j) \in \mathbb{Z}^2_+ \right)$ with distribution \mathbb{P}.
- $Z_{m,n} = \sum_{x_\cdot \in \Pi_{m,n}} \prod_{k=1}^{m+n} Y_{x_k}$ $Q_{m,n}(x_\cdot) = \frac{1}{Z_{m,n}} \prod_{k=1}^{m+n} Y_{x_k}$
- $P_{m,n}(x_\cdot) = \mathbb{E} Q_{m,n}(x_\cdot)$ (averaged measure)
Notation

- $\Pi_{m,n} = \{ \text{up-right paths } (x_k) \text{ from } (0,0) \text{ to } (m,n) \}$
- Fix $\beta = 1$. $Y_{i,j} = e^{\omega(i,j)}$ independent.
- Environment $(Y_{i,j} : (i,j) \in \mathbb{Z}_+^2)$ with distribution \mathbb{P}.
- $Z_{m,n} = \sum_{x_* \in \Pi_{m,n}} \prod_{k=1}^{m+n} Y_{x_k}$
- $Q_{m,n}(x_*) = \frac{1}{Z_{m,n}} \prod_{k=1}^{m+n} Y_{x_k}$
- $P_{m,n}(x_*) = \mathbb{E}Q_{m,n}(x_*)$ (averaged measure)
- Boundary weights also $U_{i,0} = Y_{i,0}$ and $V_{0,j} = Y_{0,j}$.
Weight distributions

For \(i, j \in \mathbb{N} \):

- \(U_{i,0}^{-1} \sim \text{Gamma}(\theta) \)
- \(V_{0,j}^{-1} \sim \text{Gamma}(\mu - \theta) \)
- \(Y_{i,j}^{-1} \sim \text{Gamma}(\mu) \)

- parameters \(0 < \theta < \mu \)
- Gamma(\theta) density: \(\Gamma(\theta)^{-1}x^{\theta-1}e^{-x} \) on \(\mathbb{R}_+ \)
Weight distributions

For \(i, j \in \mathbb{N} \):

- \(U_{i,0}^{-1} \sim \text{Gamma}(\theta) \)
- \(V_{0,j}^{-1} \sim \text{Gamma}(\mu - \theta) \)
- \(Y_{i,j}^{-1} \sim \text{Gamma}(\mu) \)

- parameters \(0 < \theta < \mu \)
- \(\text{Gamma}(\theta) \) density: \(\Gamma(\theta)^{-1} x^{\theta - 1} e^{-x} \) on \(\mathbb{R}_+ \)
- \(\mathbb{E}(\log U) = -\psi_0(\theta) \) and \(\text{Var}(\log U) = \psi_1(\theta) \)
- \(\psi_n(s) = \left(d^{n+1} / ds^{n+1} \right) \log \Gamma(s) \)
Variance bounds for log Z

With $0 < \theta < \mu$ fixed and $N \nearrow \infty$ assume

$$|m - N\Psi_1(\mu - \theta)| \leq CN^{2/3} \quad \text{and} \quad |n - N\Psi_1(\theta)| \leq CN^{2/3} \quad (1)$$
Variance bounds for log Z

With $0 < \theta < \mu$ fixed and $N \uparrow \infty$ assume

$$|m - N\Psi_1(\mu - \theta)| \leq CN^{2/3} \quad \text{and} \quad |n - N\Psi_1(\theta)| \leq CN^{2/3}$$ \hspace{1cm} (1)

Theorem

For (m, n) as in (1),

$$C_1 N^{2/3} \leq \text{Var}(\log Z_{m,n}) \leq C_2 N^{2/3}.$$

Outline: Introduction KPZ equation Log-gamma polymer
Variance bounds for log Z

With $0 < \theta < \mu$ fixed and $N \to \infty$ assume

$$|m - N\Psi_1(\mu - \theta)| \leq CN^{2/3} \quad \text{and} \quad |n - N\Psi_1(\theta)| \leq CN^{2/3} \quad (1)$$

Theorem

For (m, n) as in (1), $C_1 N^{2/3} \leq \text{Var}(\log Z_{m,n}) \leq C_2 N^{2/3}$.

Theorem

Suppose $n = \Psi_1(\theta)N$ and $m = \Psi_1(\mu - \theta)N + \gamma N^{\alpha}$ with $\gamma > 0$, $\alpha > 2/3$. Then

$$N^{-\alpha/2} \left\{ \log Z_{m,n} - \mathbb{E}(\log Z_{m,n}) \right\} \Rightarrow \mathcal{N}(0, \gamma \Psi_1(\theta))$$
Fluctuation bounds for path

\(v_0(j) = \text{leftmost, } v_1(j) = \text{rightmost point of } x. \) on horizontal line:

\[
\begin{align*}
v_0(j) &= \min\{i \in \{0, \ldots, m\} : \exists k : x_k = (i, j)\} \\
v_1(j) &= \max\{i \in \{0, \ldots, m\} : \exists k : x_k = (i, j)\}
\end{align*}
\]
Fluctuation bounds for path

\(v_0(j) = \) leftmost, \(v_1(j) = \) rightmost point of \(x \). on horizontal line:

\[
\begin{align*}
v_0(j) &= \min\{i \in \{0, \ldots, m\} : \exists k : x_k = (i, j)\} \\
v_1(j) &= \max\{i \in \{0, \ldots, m\} : \exists k : x_k = (i, j)\}
\end{align*}
\]

Theorem

Assume \((m, n)\) as previously and \(0 < \tau < 1\). Then

(a) \(P\left\{ v_0(\lfloor \tau n \rfloor) < \tau m - bN^{2/3} \quad \text{or} \quad v_1(\lfloor \tau n \rfloor) > \tau m + bN^{2/3} \right\} \leq \frac{C}{b^3} \)

(b) \(\forall \varepsilon > 0 \exists \delta > 0 \text{ such that} \)

\[
\lim_{N \to \infty} P\left\{ \exists k \text{ such that } |x_k - (\tau m, \tau n)| \leq \delta N^{2/3} \right\} \leq \varepsilon.
\]
Results for log-gamma polymer summarized

With reciprocals of gammas for weights, both endpoints of the polymer fixed and the right boundary conditions on the axes, we have identified the one-dimensional exponents

\[\zeta = \frac{2}{3} \quad \text{and} \quad \chi = \frac{1}{3}. \]
Results for log-gamma polymer summarized

With reciprocals of gammas for weights, both endpoints of the polymer fixed and the right boundary conditions on the axes, we have identified the one-dimensional exponents

\[\zeta = \frac{2}{3} \quad \text{and} \quad \chi = \frac{1}{3}. \]

Next step is to
- eliminate the boundary conditions and
- consider polymers with fixed length and free endpoint.
Results for log-gamma polymer summarized

With reciprocals of gammas for weights, both endpoints of the polymer fixed and the right boundary conditions on the axes, we have identified the one-dimensional exponents

\[\zeta = 2/3 \quad \text{and} \quad \chi = 1/3. \]

Next step is to

- eliminate the boundary conditions
- consider polymers with fixed length and free endpoint

In both scenarios we have the upper bounds for both log \(Z \) and the path.

But currently do not have the lower bounds.
Results for log-gamma polymer summarized

With reciprocals of gammas for weights, both endpoints of the polymer fixed and the right boundary conditions on the axes, we have identified the one-dimensional exponents

\[\zeta = \frac{2}{3} \quad \text{and} \quad \chi = \frac{1}{3}. \]

Next step is to
- eliminate the boundary conditions and
- consider polymers with fixed length and free endpoint

In both scenarios we have the upper bounds for both \(\log Z \) and the path.

But currently do not have the lower bounds.

Next some key points of the proof.
Burke property for log-gamma polymer with boundary

Given initial weights \((i, j \in \mathbb{N})\):

\[
U^{-1}_{i,0} \sim \text{Gamma}(\theta), \quad V^{-1}_{0,j} \sim \text{Gamma}(\mu - \theta) \quad Y^{-1}_{i,j} \sim \text{Gamma}(\mu)
\]
Burke property for log-gamma polymer with boundary

Given initial weights \((i, j \in \mathbb{N})\):

\[
U_{i,0}^{-1} \sim \text{Gamma}(\theta), \quad V_{0,j}^{-1} \sim \text{Gamma}(\mu - \theta)
\]
\[
Y_{i,j}^{-1} \sim \text{Gamma}(\mu)
\]

Compute \(Z_{m,n}\) for all \((m, n) \in \mathbb{Z}_+^2\) and then define

\[
U_{m,n} = \frac{Z_{m,n}}{Z_{m-1,n}} \quad V_{m,n} = \frac{Z_{m,n}}{Z_{m,n-1}} \quad X_{m,n} = \left(\frac{Z_{m,n}}{Z_{m+1,n}} + \frac{Z_{m,n}}{Z_{m,n+1}}\right)^{-1}
\]
Burke property for log-gamma polymer with boundary

Given initial weights \((i, j \in \mathbb{N})\):

\[
U_{i,0}^{-1} \sim \text{Gamma}(\theta), \quad V_{0,j}^{-1} \sim \text{Gamma}(\mu - \theta) \\
Y_{i,j}^{-1} \sim \text{Gamma}(\mu)
\]

Compute \(Z_{m,n}\) for all \((m, n) \in \mathbb{Z}_+^2\) and then define

\[
U_{m,n} = \frac{Z_{m,n}}{Z_{m-1,n}} \quad V_{m,n} = \frac{Z_{m,n}}{Z_{m,n-1}} \quad X_{m,n} = \left(\frac{Z_{m,n}}{Z_{m+1,n}} + \frac{Z_{m,n}}{Z_{m,n+1}} \right)^{-1}
\]

For an undirected edge \(f\):

\[
T_f = \begin{cases}
U_x & f = \{x - e_1, x\} \\
V_x & f = \{x - e_2, x\}
\end{cases}
\]
down-right path \((z_k)\) with edges \(f_k = \{z_{k-1}, z_k\}, \ k \in \mathbb{Z}\)

- interior points \(I\) of path \((z_k)\)
down-right path \((z_k)\) with edges \(f_k = \{z_{k-1}, z_k\}, \ k \in \mathbb{Z}\)

- interior points \(I\) of path \((z_k)\)

Theorem

Variables \(\{T_{f_k}, X_z : k \in \mathbb{Z}, \ z \in I\}\) are independent with marginals
\(U^{-1} \sim \text{Gamma}(\theta), \ V^{-1} \sim \text{Gamma}(\mu - \theta),\)
and \(X^{-1} \sim \text{Gamma}(\mu).\)
Theorem

Variables \(\{ T_{f_k}, X_z : k \in \mathbb{Z}, z \in \mathcal{I} \} \) are independent with marginals

\[
U^{-1} \sim \text{Gamma}(\theta), \quad V^{-1} \sim \text{Gamma}(\mu - \theta),
\]

and \(X^{-1} \sim \text{Gamma}(\mu) \).

“Burke property” because the analogous property for last-passage is a generalization of Burke’s Theorem for M/M/1 queues, via the last-passage representation of M/M/1 queues in series.
Proof of Burke property

Induction on \(I \) by flipping a growth corner:

\[
U' = Y(1 + U/V) \quad V' = Y(1 + V/U)
\]

\[
X = (U^{-1} + V^{-1})^{-1}
\]
Proof of Burke property

Induction on I by flipping a growth corner:

\[U' = Y(1 + U/V) \quad V' = Y(1 + V/U) \]
\[X = (U^{-1} + V^{-1})^{-1} \]

Lemma. Given that (U, V, Y) are independent positive r.v.’s, $(U', V', X) \overset{d}{=} (U, V, Y)$ iff (U, V, Y) have the gamma distr’s.

Proof. “if” part by computation, “only if” part from a characterization of gamma due to Lukacs (1955). □
Proof of Burke property

Induction on I by flipping a growth corner:

$V \bullet \ Y \bullet \ U \quad U' = Y(1 + U/V) \quad V' = Y(1 + V/U) \quad X = (U^{-1} + V^{-1})^{-1}$

Lemma. Given that (U, V, Y) are independent positive r.v.’s, $(U', V', X) \overset{d}{=} (U, V, Y)$ iff (U, V, Y) have the gamma distr’s.

Proof. “if” part by computation, “only if” part from a characterization of gamma due to Lukacs (1955). □

This gives all (z_k) with finite I. General case follows.
Proof of off-characteristic CLT

Recall that

\[
\begin{align*}
 n &= \Psi_1(\theta)N \\
 m &= \Psi_1(\mu - \theta)N + \gamma N^\alpha
\end{align*}
\]

\(\gamma > 0\), \(\alpha > 2/3\).
Proof of off-characteristic CLT

Recall that
\[
\begin{cases}
 n = \Psi_1(\theta)N \\
 m = \Psi_1(\mu - \theta)N + \gamma N^\alpha
\end{cases}
\]
\[\gamma > 0, \; \alpha > \frac{2}{3}.
\]

Set \(m_1 = \lfloor \Psi_1(\mu - \theta)N \rfloor\).
Proof of off-characteristic CLT

Recall that
\[
\begin{align*}
n &= \Psi_1(\theta)N \\
m &= \Psi_1(\mu - \theta)N + \gamma N^\alpha
\end{align*}
\]
\(\gamma > 0, \alpha > 2/3.\)

Set \(m_1 = \lfloor \Psi_1(\mu - \theta)N \rfloor.\) Since \(Z_{m,n} = Z_{m_1,n} \cdot \prod_{i=m_1+1}^m U_{i,n}\)
Proof of off-characteristic CLT

Recall that
\[
\begin{cases}
 n = \Psi_1(\theta)N \\
 m = \Psi_1(\mu - \theta)N + \gamma N^\alpha
\end{cases}
\]
\[\gamma > 0, \, \alpha > 2/3.\]

Set \(m_1 = \lfloor \Psi_1(\mu - \theta)N \rfloor\). Since \(Z_{m,n} = Z_{m_1,n} \cdot \prod_{i=m_1+1}^{m} U_{i,n}\)

\[
N^{-\alpha/2} \log Z_{m,n} = N^{-\alpha/2} \log Z_{m_1,n} + N^{-\alpha/2} \sum_{i=m_1+1}^{m} \log U_{i,n}
\]

First term on the right is \(O(N^{1/3 - \alpha/2}) \to 0\). Second term is a sum of order \(N^\alpha\) i.i.d. terms. \(\Box\)
Exit point of path from x-axis

$$\xi_x = \max\{k \geq 0 : x_i = (i, 0) \text{ for } 0 \leq i \leq k\}$$
Variance identity

Exit point of path from x-axis

$$\xi_x = \max\{k \geq 0 : x_i = (i, 0) \text{ for } 0 \leq i \leq k\}$$

For $\theta, x > 0$ define positive function

$$L(\theta, x) = \int_0^x (\Psi_0(\theta) - \log y) x^{-\theta} y^{\theta-1} e^{x-y} \, dy$$
Variance identity

Exit point of path from x-axis

$$\xi_x = \max\{k \geq 0 : x_i = (i, 0) \text{ for } 0 \leq i \leq k\}$$

For $\theta, x > 0$ define positive function

$$L(\theta, x) = \int_0^x (\Psi_0(\theta) - \log y) x^{-\theta} y^{\theta - 1} e^{x-y} \, dy$$

Theorem. For the model with boundary,

$$\text{Var}[\log Z_{m,n}] = n\Psi_1(\mu - \theta) - m\Psi_1(\theta) + 2 E_{m,n} \left[\sum_{i=1}^{\xi_x} L(\theta, Y_{i,0}^{-1}) \right]$$
Variance identity, sketch of proof

\[W = \log Z_{0,n} \]
\[N = \log Z_{m,n} - \log Z_{0,n} \]
\[S = \log Z_{m,0} \]
\[E = \log Z_{m,n} - \log Z_{m,0} \]
Variance identity, sketch of proof

\[N = \log Z_{m,n} - \log Z_{0,n} \]

\[W = \log Z_{0,n} \]

\[E = \log Z_{m,n} - \log Z_{m,0} \]

\[S = \log Z_{m,0} \]

\[\text{Var}[\log Z_{m,n}] = \text{Var}(W + N) \]

\[= \text{Var}(W) + \text{Var}(N) + 2 \text{Cov}(W, N) \]

\[= \text{Var}(W) + \text{Var}(N) + 2 \text{Cov}(S + E - N, N) \]

\[= \text{Var}(W) - \text{Var}(N) + 2 \text{Cov}(S, N) \quad (E, N \text{ ind.}) \]

\[= n\Psi_1(\mu - \theta) - m\Psi_1(\theta) + 2 \text{Cov}(S, N). \]
To differentiate w.r.t. parameter θ of S while keeping W fixed, introduce a separate parameter $\rho (= \mu - \theta)$ for W.

$$-\text{Cov}(S, N) = \frac{\partial}{\partial \theta} \mathbb{E}(N)$$
To differentiate w.r.t. parameter θ of S while keeping W fixed, introduce a separate parameter $\rho (= \mu - \theta)$ for W.

$$-\text{Cov}(S, N) = \frac{\partial}{\partial \theta} \mathbb{E}(N) = \tilde{\mathbb{E}} \left[\frac{\partial}{\partial \theta} \log Z_{m,n}(\theta) \right]$$
To differentiate w.r.t. parameter θ of S while keeping W fixed, introduce a separate parameter $\rho (= \mu - \theta)$ for W.

$$-\text{Cov}(S, N) = \frac{\partial}{\partial \theta} \mathbb{E}(N) = \tilde{\mathbb{E}} \left[\frac{\partial}{\partial \theta} \log Z_{m,n}(\theta) \right]$$

when $Z_{m,n}(\theta) = \sum_{x, \in \Pi_{m,n}} \prod_{i=1}^{\xi_x} H_\theta(\eta_i)^{-1} \cdot \prod_{k=\xi_x+1}^{m+n} Y_{x_k}$ with

$$\eta_i \sim \text{IID Unif}(0, 1), \quad H_\theta(\eta) = F_\theta^{-1}(\eta), \quad F_\theta(x) = \int_0^x \frac{y^{\theta-1} e^{-y}}{\Gamma(\theta)} \, dy.$$
To differentiate w.r.t. parameter θ of S while keeping W fixed, introduce a separate parameter $\rho (= \mu - \theta)$ for W.

$$-\text{Cov}(S, N) = \frac{\partial}{\partial \theta} \mathbb{E}(N) = \tilde{\mathbb{E}} \left[\frac{\partial}{\partial \theta} \log Z_{m,n}(\theta) \right]$$

when $Z_{m,n}(\theta) = \sum_{x_*, \in \Pi_{m,n}} H_{\theta}(\eta_i)^{-1} \cdot \prod_{k=\xi_x+1}^{m+n} Y_{x_k}$ with

$$\eta_i \sim \text{IID Unif}(0, 1), \quad H_{\theta}(\eta) = F_{\theta}^{-1}(\eta), \quad F_{\theta}(x) = \int_0^x y^{\theta-1} e^{-y} \frac{1}{\Gamma(\theta)} \, dy.$$

Differentiate:

$$\frac{\partial}{\partial \theta} \log Z_{m,n}(\theta) = - E^{Q_{m,n}} \left[\sum_{i=1}^{\xi_x} L(\theta, Y_{i,0}^{-1}) \right].$$
Together:

$$\text{Var}[\log Z_{m,n}] = n\Psi_1(\mu - \theta) - m\Psi_1(\theta) + 2 \text{Cov}(S, N)$$

$$= n\Psi_1(\mu - \theta) - m\Psi_1(\theta) + 2 E_{m,n} \left[\sum_{i=1}^{\xi_x} L(\theta, Y_{i,0}^{-1}) \right].$$

This was the claimed formula. \square
Sketch of upper bound proof

The argument develops an inequality that controls both $\log Z$ and ξ_x simultaneously. Introduce an auxiliary parameter $\lambda = \theta - bu/N$.

$W(\theta) = \xi_x \prod_{i=1}^N H_{\theta}(\eta_i) - 1 \cdot m^n \prod_{k=1}^{\xi_x+1} Y_{x_k} W(\lambda) \cdot \xi_x \prod_{i=1}^N H_{\lambda}(\eta_i) H_{\theta}(\eta_i)$.

$Q_{\theta,\omega}\{\xi_x \geq u\} = Z(\theta) \sum_x 1 \{\xi_x \geq u\} W(\theta) \leq Z(\lambda) Z(\theta) \cdot \lfloor u \rfloor \prod_{i=1}^N H_{\lambda}(\eta_i) H_{\theta}(\eta_i)$.

Scaling for a polymer
The argument develops an inequality that controls both log Z and ξ_x simultaneously. Introduce an auxiliary parameter $\lambda = \theta - bu/N$. The weight of a path x, such that $\xi_x > 0$ satisfies

$$W(\theta) = \prod_{i=1}^{\xi_x} H_\theta(\eta_i)^{-1} \cdot \prod_{k=\xi_x+1}^{m+n} Y_{x_k}$$
The argument develops an inequality that controls both log Z and ξ_x simultaneously. Introduce an auxiliary parameter $\lambda = \theta - bu/N$. The weight of a path x, such that $\xi_x > 0$ satisfies

$$W(\theta) = \prod_{i=1}^{\xi_x} H_\theta(\eta_i)^{-1} \cdot \prod_{k=\xi_x+1}^{m+n} Y_{x_k} = W(\lambda) \cdot \prod_{i=1}^{\xi_x} \frac{H_\lambda(\eta_i)}{H_\theta(\eta_i)}.$$
Sketch of upper bound proof

The argument develops an inequality that controls both $\log Z$ and ξ_x simultaneously. Introduce an auxiliary parameter $\lambda = \theta - bu/N$. The weight of a path x, such that $\xi_x > 0$ satisfies

$$W(\theta) = \prod_{i=1}^{\xi_x} H_\theta(\eta_i)^{-1} \cdot \prod_{k=\xi_x+1}^{m+n} Y_{x_k} = W(\lambda) \cdot \prod_{i=1}^{\xi_x} \frac{H_\lambda(\eta_i)}{H_\theta(\eta_i)}.$$

Since $H_\lambda(\eta) \leq H_\theta(\eta)$,

$$Q^{\theta,\omega} \{ \xi_x \geq u \} = \frac{1}{Z(\theta)} \sum_x 1\{ \xi_x \geq u \} W(\theta) \leq \frac{Z(\lambda)}{Z(\theta)} \cdot \prod_{i=1}^{\lfloor u \rfloor} \frac{H_\lambda(\eta_i)}{H_\theta(\eta_i)}.$$
For $1 \leq u \leq \delta N$ and $0 < s < \delta$,

\[
\mathbb{P}
\left[
\mathcal{Q}^\omega \{ \xi_x \geq u \} \geq e^{-su^2/N}
\right]
\leq \mathbb{P}\left\{ \prod_{i=1}^{[u]} \frac{H_{\lambda}(\eta_i)}{H_{\theta}(\eta_i)} \geq \alpha \right\}
\]

\[
+ \mathbb{P}\left(\frac{Z(\lambda)}{Z(\theta)} \geq \alpha^{-1} e^{-su^2/N} \right).
\]
For $1 \leq u \leq \delta N$ and $0 < s < \delta$,

\[
\mathbb{P}\left[Q^\omega \{ \xi_x \geq u \} \geq e^{-su^2/N} \right] \leq \mathbb{P}\left\{ \prod_{i=1}^{[u]} \frac{H_\lambda(\eta_i)}{H_\theta(\eta_i)} \geq \alpha \right\}
\]

\[
+ \mathbb{P}\left(\frac{Z(\lambda)}{Z(\theta)} \geq \alpha^{-1} e^{-su^2/N} \right).
\]

Choose α right. Bound these probabilities with Chebychev which brings $\text{Var}(\log Z)$ into play. In the characteristic rectangle $\text{Var}(\log Z)$ can be bounded by $E(\xi_x)$. The end result is this inequality:

\[
\mathbb{P}\left[Q^\omega \{ \xi_x \geq u \} \geq e^{-su^2/N} \right] \leq \frac{CN^2}{u^4} E(\xi_x) + \frac{CN^2}{u^3}
\]
For $1 \leq u \leq \delta N$ and $0 < s < \delta$,

$$\mathbb{P}[Q^\omega\{\xi_x \geq u\} \geq e^{-su^2/N}] \leq \mathbb{P}\left\{ \prod_{i=1}^{\lfloor u \rfloor} \frac{H_\lambda(\eta_i)}{H_\theta(\eta_i)} \geq \alpha \right\}$$

$$+ \mathbb{P}\left(\frac{Z(\lambda)}{Z(\theta)} \geq \alpha^{-1} e^{-su^2/N} \right).$$

Choose α right. Bound these probabilities with Chebychev which brings $\text{Var}(\log Z)$ into play. In the characteristic rectangle $\text{Var}(\log Z)$ can be bounded by $E(\xi_x)$. The end result is this inequality:

$$\mathbb{P}[Q^\omega\{\xi_x \geq u\} \geq e^{-su^2/N}] \leq \frac{CN^2}{u^4} E(\xi_x) + \frac{CN^2}{u^3}$$

Handle $u \geq \delta N$ with large deviation estimates. In the end, integration gives the moment bounds.
For $1 \leq u \leq \delta N$ and $0 < s < \delta$,

$$\mathbb{P}\left[Q^\omega \{ \xi_x \geq u \} \geq e^{-su^2/N} \right] \leq \mathbb{P}\left\{ \prod_{i=1}^{\lfloor u \rfloor} \frac{H_\lambda(\eta_i)}{H_\theta(\eta_i)} \geq \alpha \right\}$$

$$+ \mathbb{P}\left(\frac{Z(\lambda)}{Z(\theta)} \geq \alpha^{-1} e^{-su^2/N} \right).$$

Choose α right. Bound these probabilities with Chebychev which brings $\mathbb{V}ar(\log Z)$ into play. In the characteristic rectangle $\mathbb{V}ar(\log Z)$ can be bounded by $E(\xi_x)$. The end result is this inequality:

$$\mathbb{P}\left[Q^\omega \{ \xi_x \geq u \} \geq e^{-su^2/N} \right] \leq \frac{CN^2}{u^4} E(\xi_x) + \frac{CN^2}{u^3}$$

Handle $u \geq \delta N$ with large deviation estimates. In the end, integration gives the moment bounds. **END.**