FUNCTIONAL CENTRAL LIMIT THEOREM FOR BALLISTIC RANDOM WALK IN RANDOM ENVIRONMENT (RWRE)

Timo Seppäläinen

University of Wisconsin-Madison

(Joint work with Firas Rassoul-Agha, Univ of Utah)
RWRE on Z^d

RWRE is a Markov chain on Z^d with transition matrix created by a spatially ergodic random mechanism.

$\Omega = \text{space of environments} = \mathcal{P}^{Z^d}$ where $\mathcal{P} = \text{space of probability vectors on } Z^d$.

An environment is $\omega = (\omega_x)_{x \in Z^d} \in \Omega$. Vector ω_x gives probabilities $\omega_{x,u}$ of jumps u out of state x.

Transition probabilities are $\pi_{x,y}(\omega) = \omega_{x, y-x}$.

Given ω and initial state z, random walk X_n defined by

$$P_z^{\omega}(X_0 = z) = 1$$

$$P_z^{\omega}(X_{n+1} = y \mid X_n = x) = \pi_{x,y}(\omega)$$
P_ω^z is the *quenched* path distribution.

On Ω we put IID probability measure \mathbb{P}.

Averaged (annealed) distribution $P_z = P_\omega^z(\cdot) \mathbb{P}(d\omega)$.

\mathbb{P} ergodic under natural translations $(T_x \omega)_z = \omega_{x+z}$ on Ω.

Transition probabilities obey $\pi_{x,y}(\omega) = \pi_{0,y-x}(T_x \omega)$.

Usual assumptions Nearest-neighbor jumps and uniform ellipticity:

\[
\begin{align*}
\pi_{x,y}(\omega) &\geq \kappa > 0, & |x - y| = 1 \\
\pi_{x,y}(\omega) & = 0, & |x - y| \neq 1.
\end{align*}
\]

GOAL Answer basic questions: recurrence/transience, LLN, CLT, large deviations. Dimension $d = 1$ fairly well understood, but $d \geq 2$ not.
Examples of basic ignorance about RWRE in $d \geq 2$

(a) Recurrence/transience No general criteria exist.

(b) 0-1 Law
For $u \in \mathbb{R}^d$, $A_u = \{X_n \cdot u \to \infty\}$. Expect $P_0(A_u) \in \{0, 1\}$. Known only for $d = 2$ (Zerner and Merkl).

(c) Law of large numbers
Currently known that $X_n/n \to$ but limit can be random with two distinct values.
In $d = 2$ 0-1 law implies LLN.
In $d \geq 5$ limit velocities cannot both be nonzero (Berger).
FUNCTIONAL CENTRAL LIMIT THEOREMS

Assuming that a limit velocity \(v = \lim X_n/n \) exists, let

\[
B_n(t) = n^{-1/2} \{ X_{[nt]} - ntv \} \quad (t \geq 0)
\]

Let \(W \) be the distribution of a Brownian motion on \(\mathbb{R}^d \) with some diffusion matrix \(\Gamma \). There are two kinds of CLT’s:

- **Averaged**: \(P_0\{ B_n \in \cdot \} \longrightarrow W(\cdot) \)

- **Quenched**: \(P_0^\omega\{ B_n \in \cdot \} \longrightarrow W(\cdot) \) for \(\mathbb{P} \)-a.e. \(\omega \)

(Quenched) \(\implies \) (Averaged) by integrating out \(\omega \).
THE BALLISTIC CASE

Ballistic walks are those that satisfy $X_n/n \to v \neq 0$.

We make this assumption via the Sznitman-Zerner regeneration times.

Assume directional transience: $\exists \hat{u} \in \mathbb{Z}^d$ such that $P_0\{X_n \cdot \hat{u} \to \infty\} = 1$.

Then w.p. 1 there exists first time τ_1 such that

$$\sup_{n<\tau_1} X_n \cdot \hat{u} < X_{\tau_1} \cdot \hat{u} \leq \inf_{n \geq \tau_1} X_n \cdot \hat{u}$$

Iteration gives sequence $\tau_1 < \tau_2 < \tau_3 < \cdots < \infty$

Not stopping times, yet $\{X_{\tau_k} - X_{\tau_{k-1}}\}_{k \geq 2}$ IID under P_0.
Backtracking time $\beta = \inf\{n : X_n \cdot \hat{u} < X_0 \cdot \hat{u}\}$.

Theorem Assume directional transience $X_n \cdot \hat{u} \to \infty$.

If $E_0(\tau_1) < \infty$ then a.s. $X_n/n \to v \equiv \frac{E_0[X_{\tau_1} | \beta = \infty]}{E_0[\tau_1 | \beta = \infty]}$

If $E_0(\tau_1^2) < \infty$ then averaged CLT holds. Limiting Brownian motion has diffusion matrix

$$\Gamma = \frac{E_0[(X_{\tau_1} - \tau_1 v)(X_{\tau_1} - \tau_1 v)^t | \beta = \infty]}{E_0[\tau_1 | \beta = \infty]}$$

Proof from IID results and some estimation.

Sznitman and Zerner: these hypotheses follow from some more fundamental transience assumptions.
HOW TO OBTAIN A QUENCHED CLT?

APPROACH I. UPGRADE THE AVERAGED CLT

Control \(E_0^\omega[F(B_n(\cdot))] - E_0[F(B_n(\cdot))] \) for a rich enough class of \(\{F\} \) on path space. With this strategy:

Theorem (Bolthausen and Sznitman, 2002) \(d \geq 4 \), non-nestling: \(\mathbb{P}\left\{ \omega : \sum_z (z \cdot \hat{w}) \pi_{0,z}(\omega) \geq \eta > 0 \right\} = 1 \)

and small noise. Then quenched CLT holds.

Theorem (Berger and Zeitouni, 2007) \(d \geq 4 \), averaged CLT, and some moments on \(\tau_1 \) and \(\tau_2 - \tau_1 \). Then quenched CLT holds.
II. A MARTINGALE APPROACH FROM SCRATCH

Assumptions

• Directional transience $X_n \cdot \hat{u} \to \infty$
• $E_0(\tau_1^p) < \infty$ for a large p (e.g. $p > 176d$ suffices)
• Bounded steps (not necessarily nearest neighbor)
• Instead of ellipticity, assume that walk not restricted to a 1-dimensional subspace, and

$$\mathbb{P}\{ \exists z : \pi_{0,0} + \pi_{0,z} = 1 \} < 1.$$

Theorem (Rassoul-Agha, S. 2007) Under these assumptions quenched CLT holds.

Note The regularity assumption is the right one.
JUSTIFICATION FOR HIGH MOMENT ASSUMPTION ON τ_1

$E_0(\tau_1^p) < \infty \ \forall p < \infty$ guaranteed by:

- Non-nestling
- In the uniformly elliptic nearest neighbor case,
 \[
 \mathbb{E}\left[\left(\sum_z z \cdot \hat{u} \pi_{0,z} \right)^+ \right] > \kappa^{-1} \mathbb{E}\left[\left(\sum_z z \cdot \hat{u} \pi_{0,z} \right)^- \right].
 \]

- Sznitman’s (T’): $E_0\left[\exp(c \sup_{0 \leq n \leq \tau_1} |X_n|^{\gamma}) \right] < \infty$, $0 < \gamma < 1$

Believed that in uniformly elliptic case, (T’) \iff ballistic

Not proved, but if we accept it then this last quenched CLT covers all ballistic uniformly elliptic walks.
INGREDIENTS OF THE PROOF

Consider environment chain $T_{X_n}\omega$ with transition kernel

$$\Pi f(\omega) = \sum_z \pi_{0,z}(\omega) f(T_z\omega).$$

(Recall translations $\pi_{x,y}(T_z\omega) = \pi_{x+z,y+z}(\omega)$.)

Suppose we have an invariant distribution \mathbb{P}_∞ for Π.

Define drift $D(\omega) = \sum_z z \pi_{0,z}(\omega)$.

Let $v = \mathbb{E}_\infty(D), \ g(\omega) = D(\omega) - v$.
Decompose into martingale plus additive functional:

\[X_n - nv = X_n - \sum_{k=0}^{n-1} D(TX_k \omega) + \sum_{k=0}^{n-1} g(TX_k \omega) \equiv \bar{M}_n + S_n(g) \]

Solve \((1 + \varepsilon)h_\varepsilon - \Pi h_\varepsilon = g\) with \(h_\varepsilon = \sum_{k=1}^{\infty} \frac{\Pi^{k-1}g}{(1 + \varepsilon)^k}\).

Decompose further:

\[X_n - nv = \bar{M}_n + \sum_{k=0}^{n-1} \left(h_\varepsilon(TX_{k+1} \omega) - \Pi h_\varepsilon(TX_k \omega) \right) + \varepsilon S_n(h_\varepsilon) + R_n(\varepsilon) \]

\[= M_n(\varepsilon) + \varepsilon S_n(h_\varepsilon) + R_n(\varepsilon) \]

HOPE: After \(\varepsilon \downarrow 0\), \(X_n - nv = M_n + R_n\).

Apply martingale CLT to \(M_n\) under \(P_0^\omega\). Show \(n^{-1/2}R_n \to 0\).
By adapting arguments of Maxwell-Woodroofe (2000) this can be achieved under the hypothesis

\[\left\| \sum_{k=0}^{n-1} \Pi^k g \right\|_{L^2(\mathbb{P}_\infty)} = O(n^\alpha), \quad \alpha < 1/2. \]

Note \[\sum_{k=0}^{n-1} \Pi^k g(\omega) = E_0^\omega(X_n) - nv. \]

Theorem (Rassoul-Agha, S. 2005) Assume \(\mathbb{P}_\infty \) ergodic for \(\Pi, \sum_z |z|^2 \mathbb{E}_\infty(\pi_{0,z}) < \infty \) and

\[\mathbb{E}_\infty\left(|E_0^\omega(X_n) - nv|^2 \right) \leq C n^{1-\delta}, \quad \delta > 0. \]

Then \(B_n(t) = n^{-1/2} \{X_{[nt]} - ntv\} \) converges to a Brownian motion under \(P_0^\omega \) for \(\mathbb{P}_\infty \)-a.e. \(\omega \).
Comments This is an intermediate, general result. There remains the difficulty of applying it.

- One wants to work with \mathbb{P} but the theorem is in terms of an unknown invariant \mathbb{P}_∞. Need to prove existence of \mathbb{P}_∞ and relate it to \mathbb{P}.

- Hard part is to prove estimate

 $$\mathbb{E}_\infty \left(|E_0^\omega(X_n) - n\nu|^2 \right) \leq Cn^{1-\delta}, \quad \delta > 0.$$

 This *fails* for walks in 1 dimension, or if

 $$\mathbb{P}\{ \exists z : \pi_{0,0} + \pi_{0,z} = 1 \} = 1.$$

 In these cases $E_0^\omega(X_n)$ behaves diffusively, there is no QCLT for B_n but there is one for

 $$\tilde{B}_n(t) = n^{-1/2}\{X_{nt} - E_0^\omega(X_{nt})\}$$
APPLYING THE GENERAL THEOREM

PRELIMINARY WORK

Existence and regularity of \mathbb{P}_∞ from IID regeneration structure and moments of τ_1.
Consequence: can work exclusively with \mathbb{P}.
Remaining goal: $\mathbb{E}(|E_0^\omega(X_n) - E_0(X_n)|^2) \leq Cn^{1-\delta}$.

TWO MAIN STEPS

1. Decompose $\mathbb{E}(|E_0^\omega(X_n) - E_0(X_n)|^2)$ into martingale increments to isolate contributions of individual sites. This leads to a bound in terms of

 $E_{0,0}(|X_{[0,n]} \cap \tilde{X}_{[0,n]}|)$

intersections of two independent walks X, \tilde{X} in a common environment.
To control intersections, introduce joint regeneration times \((\mu_k, \tilde{\mu}_k)\) such that \((X, \tilde{X})\) regenerate together at position \((X_{\mu_k}, \tilde{X}_{\tilde{\mu}_k})\) at a common level.

\[
E_{0,0}\left(|X_{[0,n]} \cap \tilde{X}_{[0,n]}| \right) \leq \sum_{k=0}^{n-1} E_{0,0}\left(|X_{[\mu_k,\mu_{k+1}]} \cap \tilde{X}_{[\tilde{\mu}_k,\tilde{\mu}_{k+1}]}| \right) \\
\leq \sum_{k=0}^{n-1} E_{0,0}\left[h(\tilde{X}_{\tilde{\mu}_k} - X_{\mu_k}) \right]
\]

by restarting the walks at common regeneration levels, with

\[
h(x) = E_{0,x}\left(|X_{[0,\mu_1]} \cap \tilde{X}_{[0,\tilde{\mu}_1]}| \bigg| \beta = \tilde{\beta} = \infty \right),
\]

and a Markov chain \(Y_k = \tilde{X}_{\tilde{\mu}_k} - X_{\mu_k}\).

Estimation task has been reduced to controlling the Green function of the Markov chain \(Y_k\).
The idea for the Green function estimation:

- When X and \tilde{X} are far from each other, they have a high chance of regenerating together before intersecting.
- Thus far away from the origin Y_k can be approximated by a symmetric random walk.
- The regularity assumptions on the RWRE guarantee that Y_k exits large cubes.
- Excursions of Y_k can be related to random walk excursions.

Consequence:

$$\sum_{k=0}^{n-1} E_{0,0} [h(\tilde{X}_{\mu_k} - X_{\mu_k})] \leq Cn^{1-\eta}$$

from which follows

$$\mathbb{E}(E_0^\omega(X_n) - E_0^\omega(X_n))^2) \leq Cn^{1-\delta}.$$