Publication List

  1. Birrell, J., Hottovy, S., Giovanni Volpe, & Wehr, J. (2016). Small Mass Limit of Langevin Equation on a Manifold. Submitted. [ArXiv]
  2. Hottovy, S., McDaniel, A., & Wehr, J. (2015+). A small delay and correlation time limit of stochastic differential delay equations with state-dependent colored noise. Submitted. [ArXiv]
  3. Herzog, D.P., Hottovy, S., & Volpe, G. (2016). The Small-Mass Limit for Langevin Dynamics with Unbounded Coefficients and positive friction. J. Statist. Phys. 163(3), 659-673. [ArXiv, Journal]
  4. Hottovy, S., & Stechmann, S.N. (2015). A spatiotemporal stochastic model for tropical precipitation and water vapor dynamics. Journal of the Atmospheric Sciences, 72(12), 4721-4738. [pdf, journal]
  5. Hottovy, S. & Stechmann, S.N. (2015). Threshold models for rainfall and convection: Deterministic versus stochastic triggers. SIAM J. of Appl. Math (SIAP), 75(2), 861-884. [pdf, Supp. Mat., journal]
  6. Hottovy, S., McDaniel, A., Volpe, G., & Wehr, J. (2014). The Smoluchowski-Kramers limit of stochastic differential equations with arbitrary state-dependent friction. Communications in Mathematical Physics, 336(3), 1259-1283. [ArXiv, journal]
  7. Pesce, G., McDaniel, A., Hottovy, S., Wehr, J. & Volpe, G. (2013). Stratonovich-to-Itô transtion in noisy systems with multiplicative feedback. Nature Communications, 4, 2733. [ArXiv, journal]
  8. Hottovy, S. (2013). The Smoluchowski-Kramers Approximation for Stochastic Differential Equations with Arbitrary State Dependent Friction. (Doctoral dissertation, The University of Arizona). [pdf, dissertation]
  9. Hottovy, S., Volpe, G. & Wehr, J. (2012). Thermophoresis of Brownian particles driven by coloured noise. EPL, 99(6), 60002. [ArXiv, journal]
  10. Hottovy, S., Volpe, G. & Wehr, J. (2012). Noise-induce drift in stochastic differential equations with arbitrary friction and diffusion in the Smulochowski-Kramers limit. J. Statist. Phys., 146(4), 762-773. [ArXiv, journal]
  11. Avalos, G., Gunderson, M. & Hottovy, S. (2009). Computation of minimal norm control asymptotics relative to the null controllability of non-standard parabolic-like dynamics. Nonlinear Analysis: Theory, Methods & Applications, 71(12), e2674-e2689. [journal]

Mentored Undergraduate Papers

    1. Chernobelskiy, A., Dixit, V., Cala, A., Pandya, S. & Rosas H.J., Sponser: Hottovy, S. (2013). Modeling Learning and Cooperation in Iterative Games. SIAM Undergraduate Research Online (SIURO), 6, 42-53. [journal]