Complex Fluids in Biological Systems
BIOLOGICAL AND MEDICAL PHYSICS, BIOMEDICAL ENGINEERING

The fields of biological and medical physics and biomedical engineering are broad, multidisciplinary and dynamic. They lie at the crossroads of frontier research in physics, biology, chemistry, and medicine. The Biological and Medical Physics, Biomedical Engineering Series is intended to be comprehensive, covering a broad range of topics important to the study of the physical, chemical and biological sciences. Its goal is to provide scientists and engineers with textbooks, monographs, and reference works to address the growing need for information.

Books in the series emphasize established and emergent areas of science including molecular, membrane, and mathematical biophysics; photosynthetic energy harvesting and conversion; information processing; physical principles of genetics; sensory communications; automata networks, neural networks, and cellular automata. Equally important will be coverage of applied aspects of biological and medical physics and biomedical engineering such as molecular electronic components and devices, biosensors, medicine, imaging, physical principles of renewable energy production, advanced prostheses, and environmental control and engineering.

Editor-in-Chief:
Elias Greenbaum, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA

Editorial Board:
Masuo Aizawa, Department of Bioengineering, Tokyo Institute of Technology, Yokohama, Japan
Olaf S. Andersen, Department of Physiology, Biophysics & Molecular Medicine, Cornell University, New York, USA
Robert H. Austin, Department of Physics, Princeton University, Princeton, New Jersey, USA
James Barber, Department of Biochemistry, Imperial College of Science, Technology and Medicine, London, England
Howard C. Berg, Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA
Victor Bloomfield, Department of Biochemistry, University of Minnesota, St. Paul, Minnesota, USA
Robert Callender, Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, USA
Britton Chance, University of Pennsylvania Department of Biochemistry/Biophysics Philadelphia, USA
Steven Chu, Lawrence Berkeley National Laboratory, Berkeley, California, USA
Louis J. DeFelice, Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA
Johann Deisenhofer, Howard Hughes Medical Institute, The University of Texas, Dallas, Texas, USA
George Feher, Department of Physics, University of California, San Diego, La Jolla, California, USA
Hans Frauenfelder, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
Ivar Giaever, Rensselaer Polytechnic Institute, Troy, New York, USA
Sol M. Gruner, Cornell University, Ithaca, New York, USA
Judith Herzfeld, Department of Chemistry, Brandeis University, Waltham, Massachusetts, USA
Mark S. Humayun, Doheny Eye Institute, Los Angeles, California, USA
Pierre Joliot, Institute de Biologie Physico-Chimique, Fondation Edmond de Rothschild, Paris, France
Lajos Keszthelyi, Institute of Biophysics, Hungarian Academy of Sciences, Szeged, Hungary
Robert S. Knox, Department of Physics and Astronomy, University of Rochester, Rochester, New York, USA
Aaron Lewis, Department of Applied Physics, Hebrew University, Jerusalem, Israel
Stuart M. Lindsay, Department of Physics and Astronomy, Arizona State University, Tempe, Arizona, USA
David Mauzerall, Rockefeller University, New York, New York, USA
Eugenie V. Mielczarek, Department of Physics and Astronomy, George Mason University, Fairfax, Virginia, USA
Markolf Niemz, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
V. Adrian Parsegian, Physical Science Laboratory, National Institutes of Health, Bethesda, Maryland, USA
Linda S. Powers, University of Arizona, Tucson, Arizona, USA
Earl W. Prohofsky, Department of Physics, Purdue University, West Lafayette, Indiana, USA
Andrew Rubin, Department of Biophysics, Moscow State University, Moscow, Russia
Michael Seibert, National Renewable Energy Laboratory, Golden, Colorado, USA
David Thomas, Department of Biochemistry, University of Minnesota Medical School, Minneapolis, Minnesota, USA

More information about this series at http://www.springer.com/series/3740
Saverio E. Spagnolie
Editor

Complex Fluids in Biological Systems
Experiment, Theory, and Computation

Springer
To life, in all its wondrous
and stupefying complexity
Preface

The complexity of biological systems, even on the smallest length scales, is staggering. Biological systems are replete with active functionality, heterogeneity, memory, and interconnectedness on a vast spectrum of length and time scales. With our ever-advancing abilities to observe nature in vivo at the microscale, and with continuing developments of mathematical and numerical machinery for understanding multiscale physical systems, the fields of complex fluids and biological systems are ripe for fruitful cross-pollination. There have already been many successful scientific advances along these lines, as will be made clear in the chapters that follow. The aim of this book is to introduce the reader to many of the exciting directions that this research is taking and to provide a valuable reference on fundamental phenomena, models, and analysis of complex fluids in a variety of biological systems.

The book is organized into four parts. In Part I, Newtonian and complex fluids are introduced, along with the terminology and models that will appear frequently throughout the book. The first chapter provides the mathematical framework of continuum mechanics and presents common constitutive laws used to describe fluids with such properties as shear-dependent viscosity and viscoelasticity. Classical rheological flows frequently used in experiments are introduced. The second chapter lays the foundations for the topics to be covered in the book and explores critical functional roles played by complex fluids in a familiar biological system, the human body. Using mucus as an illustrative example, a multidisciplinary approach to studying and modeling soft, complex biological matter is emphasized.

In Part II, the measurement of biological material properties, or rheology, takes center stage. The first chapter is devoted to microrheology, wherein the behavior of small immersed particles is used to infer material properties of the surrounding environment. Both passive microrheology and active microrheology are discussed, beginning with the famed Stokes-Einstein relation and marching through a history of the field towards a “nonequilibrium equation of state.” The following two chapters return to specific biological structures, namely the cell membrane and cell cytoskeleton. Microrheology is revisited as a means of studying the viscoelastic properties of molecularly thin shells, and the intricate biopolymer network internal...
to individual cells is introduced. A final chapter in this section explores a variety of challenges faced by experimentalists in the study of complex biological fluids and shows how a misinterpretation of data can suggest complex fluid properties when there are none and vice versa.

Part III focuses on the locomotion of microorganisms through complex biological fluids, as described from experimental, analytical, and numerical perspectives. The first chapter reviews the recent experimental studies of biolocomotion in viscous and viscoelastic fluids and then turns to intriguing experimental results on the propulsion of a model organism, the roundworm *C. elegans*. This sets the stage for the following chapter, which covers a detailed mathematical theory of locomotion in complex fluids, and connections between microrheology and biolocomotion are described. The interaction of swimming organisms in complex fluids is also discussed, which leads naturally into the final chapter of the part. In the last chapter, the focus turns to a model of large collections of such swimming organisms, or an *active suspension*, which can exhibit large-scale correlated motions, pattern formation, and complex fluid properties including normal stress differences. The model is extended to the study of other systems, including the interaction of microtubules and translocating motor proteins as found in individual cells.

Finally, Part IV covers methods for computing fluid flows with intricate immersed boundaries. Common numerical approaches are made considerably more challenging when the fluid is highly elastic. The first chapter describes many of these challenges, including the catastrophic high-Weissenberg number problem, and offers solutions. The immersed boundary method is introduced, and the locomotion of *C. elegans* in viscoelastic fluids is revisited as a test problem from a numerical perspective. The final chapter of the book presents a cell-level numerical study of blood flow, where the shapes and dynamics of individual cells and their interactions are captured in a boundary integral formulation of the problem. The numerical method is used to understand physical effects well known to physiologists such as the Fähræus effect, Fähræus-Lindqvist effect, and the margination of leukocytes and platelets.

The chapters contained herein will provide the reader with an overview as well as a detailed inspection of the challenges and opportunities that await us in the coming decades of research in complex biological flows, and the observations, methods, and tools available for their study. Active areas of exploration are presented by many of the world’s foremost experts in their respective fields. Consequently, each chapter both provides a substantial review of the literature and delivers the very cutting edge of our current knowledge. The book was developed with advanced undergraduate and early graduate students in the engineering, biological, and mathematical sciences in mind, but it will appeal to anyone interested in the intricate and beautiful nature of complex fluids in the context of living systems.

Numerous acknowledgements are in order. It has been a great pleasure to work with the many authors of this book, who continue to forge new paths in their respective fields and to inspire with their creativity and remarkably hard work. It is immensely gratifying to toil as a member of an extended scientific family that knows no geographical borders. I am particularly indebted to Harvey Segur, Michael
Shelley, Eric Lauga, Thomas Powers, and Jean-Luc Thiffeault, and I would like to thank Gwynn Elfring for dependable consultation on this project. Finally, I am forever grateful to my wife Elena for her love and support, and to my daughter Carina for joining the adventure.

Madison, WI, USA

July, 2014
Contents

Part I Introduction to Complex Fluids

1 Introduction to Complex Fluids ... 3
 Alexander Morozov and Saverio E. Spagnolie
 1 Introduction .. 3
 2 Newtonian Fluid Mechanics .. 4
 2.1 Material (Lagrangian) and Spatial (Eulerian) Variables 5
 2.2 Conservation of Mass ... 6
 2.3 Conservation of Momentum 7
 2.4 The Cauchy Stress Tensor and the Navier–Stokes Equations ... 8
 2.5 Dimensional Analysis and the Stokes Equations 12
 3 Generalized Newtonian Fluids 13
 3.1 Shear-Thinning and Shear-Thickening Fluids 14
 3.2 Carreau–Yasuda and Power-Law Fluids 15
 3.3 Mechanical Instability of Extremely Shear-Thinning Fluids ... 18
 4 Differential Constitutive Equations for Viscoelastic Fluids 20
 4.1 Linear Maxwell Fluids and Kelvin–Voigt Solids 20
 4.2 Objectivity and Convected Derivatives 23
 4.3 Canonical Nonlinear Differential Constitutive Equations 28
 4.4 A Kinetic Theory: The Linear Elastic Dumbbell Model 33
 5 Material Properties of Viscoelastic Fluids 39
 5.1 Normal Stress Differences 39
 5.2 Normal-Stress Measurements 42
 5.3 Other Flows .. 46
 6 Final Words of Caution: A Health Warning 47
 7 Conclusion .. 51
 References .. 51

2 Complex Fluids and Soft Structures in the Human Body 53
 Paula A. Vasquez and M. Gregory Forest
 1 Introduction .. 53
 1.1 Biological Materials in the Human Body 58
2 Mucus in the Human Body .. 64
 2.1 Mucus Composition ... 65
 2.2 Mucus Viscoelasticity ... 67
 2.3 Respiratory Mucus Clearance 72
 2.4 Diffusion in Mucus .. 83
3 Modeling Structure and Dynamics Within a Single Cell:
 The Mitotic Yeast Spindle ... 91
 3.1 Modeling Mitosis in Yeast Cells 91
4 Modeling Cell Motility ... 101
References .. 104

Part II Rheology of Complex Biological Fluids

3 Theoretical Microrheology ... 113
 Roseanna N. Zia and John F. Brady
 1 Introduction .. 114
 2 Passive Microrheology: Brownian Motion 117
 2.1 Single-Particle Diffusion and the Viscosity
 of Newtonian Solvents ... 118
 2.2 Extension to Viscoelastic Fluids: The Generalized
 Stokes–Einstein Relation .. 121
 2.3 Validity of the Stokes–Einstein Relation? 123
 2.4 Dual-Probe Microrheology 130
 3 Nonequilibrium Systems: Active Microrheology 132
 3.1 Model System .. 133
 3.2 Microviscosity .. 134
 3.3 Force-Induced Diffusion: Microdiffusivity 139
 3.4 A Complete Picture: Microviscosity,
 Microdiffusivity, and Normal Stresses 143
 3.5 Time-Dependent Flows ... 147
 3.6 Brownian Dynamics Simulations 149
 4 A “Non-equilibrium Equation of State” 152
 5 Experimental Measurement ... 153
 6 Summary ... 154
References ... 155

4 Membrane Rheology ... 159
 Arthur A. Evans and Alex J. Levine
 1 Overview of Membranes and Langmuir Monolayers 160
 2 Membrane Mechanics .. 165
 3 Dynamical Linear Response 166
 3.1 Flat Membranes .. 167
 3.2 Curved Surfaces ... 170
 4 Monolayer Rheology Experiments 172
 4.1 Macroscopic Methods .. 173
8 Theory of Locomotion Through Complex Fluids

Gwynn J. Elfring and Eric Lauga

1 Introduction .. 283
2 Locomotion in Fluids .. 284
 2.1 Boundary Motion ... 284
 2.2 The Lorentz Reciprocal Theorem................................. 287
 2.3 Swimming in Newtonian Fluids 289
 2.4 Small-Amplitude Motion ... 291
3 Locomotion in Non-Newtonian Fluids 292
 3.1 Small-Amplitude Perturbations................................... 293
 3.2 Slowly Varying Flows... 298
4 Infinite Models... 302
 4.1 Taylor Swimming Sheet... 303
 4.2 Large-Amplitude Deformations 307
 4.3 Shear-Dependent Viscosity 310
 4.4 Prescribed Forcing... 311
 4.5 Two-Fluid Models ... 312
 4.6 Collective Effects.. 314
5 Perspective ... 315
References.. 316

9 Theory of Active Suspensions ... 319

David Saintillan and Michael J. Shelley

1 Background .. 319
2 A Simple Kinetic Model... 325
 2.1 Smoluchowski Equation .. 325
 2.2 Mean-Field Flow and Active Stress Tensor 327
 2.3 The Conformational Entropy 329
 2.4 Stability of the Uniform Isotropic State 330
3 Extensions and Applications .. 333
 3.1 Concentrated Suspensions 333
 3.2 Confinement ... 337
 3.3 Chemotaxis .. 340
 3.4 Fluid Viscoelasticity ... 343
4 Other Active Fluids ... 344
 4.1 Microtubules and Motor Proteins 344
 4.2 Chemically Active Particles 348
5 Outlook ... 351
References.. 351
Part IV Computational Methods

10 Computational Challenges for Simulating Strongly Elastic Flows in Biology .. 359
 Robert D. Guy and Becca Thomases
 1 Strongly Elastic Flows ... 361
 1.1 Historical Perspective ... 362
 1.2 Advances from Analysis .. 363
 1.3 High-Weissenberg Number Problem in the Oldroyd-B Model .. 364
 1.4 Numerical Approaches .. 366
 1.5 Molecular Models ... 369
 1.6 Extensional Flow Simulations 371
 2 Immersed Boundary Methods .. 376
 2.1 Immersed Boundary Equations 378
 2.2 Explicit-Time Stepping.. 379
 2.3 Implicit-Time Stepping.. 380
 3 Locomotion of Undulatory Swimmers 382
 3.1 Swimmer Model ... 382
 3.2 Swimming Speed .. 387
 3.3 Time and Space Resolution 389
 3.4 Effect of Increasing Bending Stiffness 391
 3.5 Efficiency of the Implicit-Time Method.......................... 392
 4 Conclusions .. 394

References.. 395

11 Cell Distribution and Segregation Phenomena During Blood Flow .. 399
 Amit Kumar and Michael D. Graham
 1 Background .. 400
 1.1 Blood: Components and Physiological Functions 400
 1.2 Rheology and Nonuniform Flow Phenomena in Blood 402
 1.3 Distribution of Blood Cells During Flow: Cell-Free Layer and Margination .. 404
 1.4 Effect of Plasma Rheology on Cell Distribution 408
 1.5 Motivation and Goals .. 410
 2 Problem Formulation and Implementation 411
 2.1 Fluid Flow Problem ... 411
 2.2 Membrane Mechanics ... 417
 3 Segregation by Membrane Rigidity: Simulations and Theory 420
 3.1 Boundary Integral Simulations of Binary Suspensions 420
 3.2 Master Equation Model for Binary Suspensions 422
 4 Effect of Polymer Additives .. 428
 5 Conclusions and Outlook .. 429

References.. 431

Index... 437
Contributors

Paulo E. Arratia Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA, USA

John F. Brady Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA

Lucas M. Caretta Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA

Gwynn J. Elfring Department of Mechanical Engineering, University of British Columbia, Vancouver, BC, Canada

Arthur A. Evans Department of Physics, University of Massachusetts Amherst, Amherst, MA, USA

Randy H. Ewoldt Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA

M. Gregory Forest Department of Mathematics, Institute for Advanced Materials, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA

Michael D. Graham Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA

Robert D. Guy Department of Mathematics, University of California, Davis, 1 Shields Ave., Davis, CA 95616, USA

Hamed Hatami-Marbini School of Mechanical and Aerospace Engineering, Oklahoma State University, Stillwater, OK, USA

Michael T. Johnston Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA

Amit Kumar Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
Eric Lauga Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, UK

Alex J. Levine Department of Chemistry and Biochemistry, The California Nano-systems Institute, UCLA, Los Angeles, CA, USA

Mohammad R. K. Mofrad Department of Bioengineering, University of California, Berkeley, CA, USA

Alexander Morozov SUPA, School of Physics and Astronomy, University of Edinburgh, JCMB, Edinburgh, UK

David Saintillan Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA, USA

Michael J. Shelley Courant Institute of Mathematical Sciences, New York University, New York, NY, USA

Saverio E. Spagnolie Department of Mathematics, University of Wisconsin-Madison, Madison, WI, USA

Josué Sznitman Department of Biomedical Engineering, Technion-Israel Institute of Technology, Technion City, Haifa, Israel

Becca Thomases Department of Mathematics, University of California, Davis, CA, USA

Paula A. Vasquez Department of Mathematics, University of South Carolina, Columbia, SC, USA

Roseanna N. Zia School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
List of Symbols

Fluid Properties

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\rho)</td>
<td>Density</td>
</tr>
<tr>
<td>(\mu)</td>
<td>Viscosity of a Newtonian fluid</td>
</tr>
</tbody>
</table>

Fluid Dynamics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mathbf{u})</td>
<td>Fluid velocity</td>
</tr>
<tr>
<td>(p)</td>
<td>Pressure</td>
</tr>
<tr>
<td>(\mathbf{\sigma})</td>
<td>Total stress tensor ((= -pI + \mathbf{\tau}))</td>
</tr>
<tr>
<td>(\mathbf{\tau})</td>
<td>Deviatoric stress tensor</td>
</tr>
<tr>
<td>(\frac{D}{Dt})</td>
<td>Substantial/material time derivative ((= \partial / \partial t + \mathbf{u} \cdot \nabla))</td>
</tr>
<tr>
<td>(\nabla)</td>
<td>Upper convected time derivative of (\mathbf{\tau}) ((= (D/Dt)\mathbf{\tau} - [(\nabla\mathbf{u})^T \cdot \mathbf{\tau} + \mathbf{\tau} \cdot \nabla \mathbf{u}]))</td>
</tr>
</tbody>
</table>

Kinematic Tensors

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\nabla \mathbf{u})</td>
<td>Velocity gradient tensor ([\nabla \mathbf{u}]_{ij} = \partial u_j / \partial x_i)</td>
</tr>
<tr>
<td>(\dot{\mathbf{\gamma}})</td>
<td>Rate-of-strain tensor ((= \nabla \mathbf{u} + (\nabla \mathbf{u})^T))</td>
</tr>
<tr>
<td>(\omega)</td>
<td>Vorticity tensor ((= \nabla \mathbf{u} - (\nabla \mathbf{u})^T))</td>
</tr>
</tbody>
</table>

Quantities in Constitutive Equations

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\eta_0)</td>
<td>Zero-shear-rate viscosity</td>
</tr>
<tr>
<td>(\eta_\infty)</td>
<td>Infinite-shear-rate viscosity</td>
</tr>
<tr>
<td>(\lambda)</td>
<td>Relaxation time</td>
</tr>
<tr>
<td>(G(t-t'))</td>
<td>Relaxation modulus</td>
</tr>
<tr>
<td>(M(t-t'))</td>
<td>Memory function</td>
</tr>
</tbody>
</table>

Material Functions

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\eta(|\dot{\mathbf{\gamma}}|))</td>
<td>Non-Newtonian viscosity ((= \eta \left(\sqrt{\text{tr}(\dot{\mathbf{\gamma}}^2)/2} \right))</td>
</tr>
<tr>
<td>(N_1)</td>
<td>First normal stress difference</td>
</tr>
<tr>
<td>(N_2)</td>
<td>Second normal stress difference</td>
</tr>
<tr>
<td>(\Psi_1)</td>
<td>First normal stress difference coefficient</td>
</tr>
</tbody>
</table>
List of Symbols

- Ψ_2 Second normal stress difference coefficient
- $\eta^*(\omega)$ Complex viscosity ($\eta^* = \eta' - i\eta''$)
- $G^*(\omega)$ Complex modulus ($G^* = G' + iG''$)

Dimensionless Numbers

- De Deborah number
- Re Reynolds number
- Wi Weissenberg number

General

- k_B Boltzmann’s constant
- T Absolute temperature
- N_A Avogadro’s number

Mathematical Symbols

- $\Re(z)$ Real part of complex number z
- $\Im(z)$ Imaginary part of complex number z