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ABSTRACT

To define a conserved energy for an atmosphere with phase changes of water (such as vapor and liquid),

motivation in the past has come from generalizations of dry energies—in particular, from gravitational po-

tential energy rgz. Here a new definition of moist energy is introduced, and it generalizes another form of dry

potential energy, proportional to u2, which is valuable since it is manifestly quadratic and positive definite. The

moist potential energy here is piecewise quadratic and can be decomposed into three parts, proportional to

b2
uHu, b

2
sHs, and M2Hu, which represent, respectively, buoyant energies and a moist latent energy that is

released upon a change of phase. The Heaviside functionsHu andHs indicate the unsaturated and saturated

phases, respectively. The M2 energy is also associated with an additional eigenmode that arises for a moist

atmosphere but not a dry atmosphere. Both the Boussinesq and anelastic equations are examined, and similar

energy decompositions are shown in both cases, although the anelastic energy is not quadratic. Extensions

that include cloud microphysics are also discussed, such as the Kessler warm-rain scheme. As an application,

empirical orthogonal function (EOF) analysis is considered, using a piecewise quadratic moist energy as a

weighted energy in contrast to the standardL2 energy. By incorporating information about phase changes into

the energy, the leading EOF modes become fundamentally different and capture the variability of the cloud

layer rather than the dry subcloud layer.

1. Introduction

The main topic of this paper is conserved energies

for atmospheric dynamics, in the case including phase

changes of water—for example, vapor and liquid pha-

ses. As motivation, we will briefly discuss energies for

dry dynamics (without water of any phase), followed by

motivating discussion of energies for moist dynamics.

Two energies can be shown to be conserved for a dry

Boussinesq atmosphere. The two energy densities are

E
1
5

1

2
juj2 1 b2

2N2
(1)

and

~E
2
5

1

2
juj2 2 bz ,

or the related quantity

E
2
5

1

2
juj2 2

ðz
a

(btot 2N2z0) dz0 . (2)

An anelastic atmosphere also has a conserved en-

ergy, and is also considered in the present paper, but

we restrict attention to the Boussinesq case for the

moment for motivational purposes. For references,
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see Young (2010), Vallis (2006, chapter 2), or Ingersoll

(2005), and earlier relatedwork ofHolliday andMcIntyre

(1981) and Andrews (1981). Here, u is the velocity, b

is the buoyancy, N is the constant buoyancy frequency,

btot 5 b 1 N2z, a is an arbitrary reference height, and

the integration in (2) is done while keeping btot constant.

Each of the energies has its advantageous properties: for

example,E2 and ~E2 use potential energies that are natural

generalizations of the gravitational potential energy rgz,

and E1 has the property of being quadratic and clearly

positive definite.

For a moist atmosphere with phase changes, on the

other hand, a generalization of the potential energy in

(2) has been proposed as

E
2
5

1

2
juj2 2

ðz
a

gb(utote ,qtot
t , z0) dz0 . (3)

For references, see Pauluis (2008), Young (2010),

Hernandez-Duenas et al. (2013, 2015), and Tailleux

(2013). Here, the buoyancy b is a function of the equiv-

alent potential temperature utote , the total water mixing

ratio qtot
t , and height z, and again the integral is taken

with utote and qtot
t held fixed.

The main purpose of the present paper is to show that

the dry quadratic energy in (1) can also be generalized

for a moist atmosphere with phase changes. Specifi-

cally, in this paper, we introduce the piecewise quadratic

conserved energy
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Here, M5N22
u bu 2N22

s bs, Hu is a Heaviside function

indicating unsaturated regions, and Hs 5 1 2 Hu is a

Heaviside function indicating saturated regions. The

search for an energy of this form was motivated by a

similar energy for quasigeostrophic equations with pre-

cipitation and phase changes (Smith and Stechmann

2017). The energy in (4) has several advantageous prop-

erties: it is piecewise quadratic, manifestly positive defi-

nite, and the potential energy has been decomposed into

buoyant contributions from each phase (proportional to

b2
uHu and b2

sHs) and a latent moist energy (proportional

to M2Hu). Furthermore, the piecewise quadratic energy

in (4) is equivalent to the earlier energy in (3) aside

from the addition of a material invariant (a function of

the conserved variables utote and qtot
t ).

Another moist energy that has been considered in

the past is the moist available potential energy (APE) of

Lorenz (1955, 1978; see also Pauluis 2007, and refer-

ences therein). It can be viewed as a special case of the

potential energy, where a specific background state

has been selected (e.g., Tailleux 2013; Stansifer et al.

2017). In the present paper, a more general setup is

considered where the reference state is not constrained

in the sense of Lorenz’s APE but could be chosen

in that way if desired. Also, Lorenz’s APE is often

considered along with the assumption of hydrostatic

balance, whereas the present paper considers non-

hydrostatic motions according to the Boussinesq or

anelastic equations.

Yet another type of moist energy that is often con-

sidered is the moist static energy (e.g., Emanuel 1994).

It is a thermodynamic quantity, not including a con-

tribution from kinetic energy, and it is conserved un-

der the assumption of hydrostatic balance (whereas,

as mentioned above, the present paper considers non-

hydrostatic motions according to the Boussinesq or an-

elastic equations).

The remainder of the paper is organized as follows.

In section 2a we describe in detail the dry Boussinesq

equations, as well as discuss E1 and E2 in slightly more

depth. Thus, section 2b contains a description of the

moist, nonprecipitating Boussinesq equations with phase

changes. In section 2c we show that it is still possible

to obtain a quadratic, positive-definite energy even in

the presence of phase changes. While the Boussinesq

case provides a natural starting point and simple ana-

lytical expressions, the real atmosphere has nonconstant

buoyancy frequency and other complications. As steps

to moving beyond this simple case, subsequent sec-

tions will incorporate increasing amounts of thermo-

dynamic and microphysical complexity. In section 3,

we consider the anelastic equations, and while we

cannot formulate a quadratic energy, we can still de-

compose a total energy into buoyant energy and la-

tent energy released at the interface between different

phases. In section 4, we consider a Kessler warm-rain pa-

rameterization of cloud microphysics, and the Fast Auto-

conversion and Rain Evaporation (FARE) model of

Hernandez-Duenas et al. (2013). In the former case,

while we cannot obtain a conserved energy, we can

still derive an energy principle that involves the

source terms representing cloud microphysical pro-

cesses. In the latter case, we show that there exists

a unique quadratic, positive-definite energy, which is

conserved in the absence of rainfall. In section 5, we

discuss an application to empirical orthogonal func-

tion analysis, and we show that taking phase changes

into consideration results in significant differences

of the EOF modes. We conclude with a discussion in

section 6.
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2. Boussinesq equations

a. Energetics for the dry Boussinesq equations

We will begin by describing energetics for a dry

Boussinesq system with no phase changes. For deri-

vations of the Boussinesq equations, see, for example,

Vallis (2006). The equations for a dry atmosphere

with no phase changes are

Du

Dt
52=f1 bẑ , (5a)

Db

Dt
1N2w5 0, (5b)

= � u5 0, (5c)

where u(x, t) is the velocity vector, f 5 p0/r0, p0 is the
pressure, r0 is a constant background density, b is the

buoyancy, and N2 is the squared buoyancy frequency

and is taken to be a constant. The buoyancy is b5 gu0/u0,
where u0 is the potential temperature, and we have as-

sumed that the total thermodynamic variables of potential

temperature u(x, t) and pressure p(x, t) have been de-

composed into background and fluctuating parts; u(x, t)5
~u(z)1 u0(x, t) and p(x, t)5 ~p(z)1 p0(x, t), where the

background pressure ~p(z) is hydrostatically balanced.

The total energy of a system governed by (5a)–(5c)

can be decomposed into both kinetic and potential en-

ergy parts. There are, however, different ways of speci-

fying the potential energy component, which give rise to

the two energies, E1 and E2, given by (1) and (2). These

two energies satisfy the equations

›E

›t
1= � [u(E1f)]5 0, (6)

where E can be E1 or E2. While there are clear differ-

ences between these two energies, they are still related.

It can be shown that

E
2
5E

1
2

1

2N2
[b1N2(z2 a)]2 . (7)

From (5b), we see that b 1 N2(z 2 a) is a conserved

variable, which implies that E1 and E2 differ by a

quadratic material invariant. In subsequent sections,

we will define total energies analogous to those given

in (1) and (2) that include the effects of moisture and

phase changes, and show that these energies satisfy an

equation similar to (7).

b. Moist Boussinesq equations with phase changes

Now we incorporate moisture and phase changes into

the Boussinesq equations. That is, we assume that mois-

ture is present and can be in the form of either water

vapor or liquid water. Regions where liquid water is

present are referred to as saturated regions, and regions

without liquid water are referred to as unsaturated re-

gions. If we assume that liquid water does not precipi-

tate, then the equations are

Du

Dt
52=f1 (b

u
H

u
1 b

s
H

s
)ẑ , (8a)

Db
u

Dt
1N2

uw5 0, (8b)

Db
s

Dt
1N2

s w5 0, (8c)

= � u5 0, (8d)

where u is the velocity vector, and bu is the unsaturated

buoyancy, and bs is the saturated buoyancy. The vari-

ables bu and bs are defined over the whole domain and

can be expressed in terms of equivalent potential tem-

perature ue, total water qt, and prescribed saturation

mixing ratio qys:

b
u
5 g

"
u
e

u
0

1

 
R

yd
2

L
y

c
p
u
0

!
q
t

#
, (9a)

b
s
5 g

"
u
e

u
0

1

 
R

yd
2

L
y

c
p
u
0

1 1

!
q
ys
(z)2 q

t

#
. (9b)

The Heaviside functions Hu and Hs indicate the un-

saturated and saturated phases, respectively, and are

defined in terms of bu and bs:

H
u
5

�
1 if b

u
.b

s

0 if b
u
# b

s
,

(10)

andHs5 12Hu. More precisely,Hu(x, t) is a function of

x and t and is defined via function composition as

Hu(x, t) 5 H(bu 2 bs), where bu and bs are themselves

functions of x and t, and where H(s) is the Heaviside

function, which takes the value of 1 for s . 0 and 0 for

s # 0. The constants Nu and Ns are the buoyancy fre-

quencies for the unsaturated and saturated phases, re-

spectively, and are defined as

N2
u 5 g

d

dz

"
~u
e

u
0

1

 
R

yd
2

L
y

c
p
u
0

!
~q
t

#
, (11a)

N2
s 5 g

d

dz

"
~u
e

u
0

2

 
R

yd
2

L
y

c
p
u
0

1 1

!
q
ys
(z)2 ~q

t

#
. (11b)

Similar types of equations for nonprecipitating cloud

dynamics have been considered in the past (e.g.,
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Kuo 1961; Bretherton 1987; Grabowski and Clark 1993;

Cuijpers and Duynkerke 1993; Stevens 2007; Pauluis and

Schumacher 2010, 2011). A derivation of (8), starting

from the perhaps more familiar equations for equivalent

potential temperature ue and total water qt, is described in

the appendix.

c. Piecewise quadratic energy

In this section, we present one of the main results of

the paper: we show that there is a piecewise quadratic,

positive-definite conserved energy for the moist, non-

precipitating Boussinesq equations.

To find the piecewise quadratic energy, we take mo-

tivation from Smith and Stechmann (2017) and assume

that the total energy, E1, is the sum of four components:

kinetic energy, unsaturated potential energy, saturated

potential energy, and moist energy, which we denote

as KE, PEu, PEs, and ME, respectively. Explicitly, this

means that

E
1
5KE1PE

u
1PE

s
1ME. (12)

By analogy with Smith and Stechmann (2017), these

components are assumed to take the form

KE5
1

2
juj2 , (13a)

PE
u
5

1

2

 
b2
u

N2
u

!
H

u
, (13b)

PE
s
5

1

2

 
b2
s

N2
s

!
H

s
, (13c)

ME5
1

2
A

u
M2H

u
1

1

2
A

s
M2H

s
, (13d)

where

M5
b
u

N2
u

2
b
s

N2
s

(14)

and

DM

Dt
5 0, (15)

so that M is a material invariant.

To motivate the form we have chosen for the moist

energy, ME, we make two observations. First, since

M is a material invariant, ME has no impact on en-

ergy transfers within each phase, but it can still im-

pact energy transfers at the phase interface, due to

the Heaviside factors in (13d). The coefficientsAu and

As are then determined to provide the appropriate

amount of latent energy transferred at the interface.

Second, the variable M is associated with an addi-

tional eigenmode that arises for moist dynamics but

is not present for dry dynamics. It essentially emerges

from the linearization of (8) in the purely unsaturated

or purely saturated case (see, e.g., Hernandez-Duenas

et al. 2015; Smith and Stechmann 2017, and refer-

ences therein). As such, it is natural to suppose that

a moist energy should have an additional term re-

lated to M2 and associated with this additional moist

eigenmode. Indeed, other moist systems have also

been shown to have an M2 energy component (e.g.,

Frierson et al. 2004; Stechmann and Majda 2006;

Chen and Stechmann 2016), but without the Heavi-

side factors that arise in ME in (13d) due to the phase

changes.

The next step is to determine the values of Au and As,

which are, as of yet, unknown constants. They will be

determined by requiring that the material derivative of

E1 consist of only divergence terms. Following this idea,

we differentiate each component of the total energy.

The derivative of the kinetic energy is found by tak-

ing the dot product of (8a) with u, and the derivative of

PEu is found by noting that

D

Dt
PE

u
5

D

Dt

 
1

2

b2
u

N2
u

!
H

u
1
1

2

b2
u

N2
u

DH
u

Dt
.

The derivatives of PEs andMEare determined similarly.

We then have

D

Dt
KE52= � (fu)1wb

u
H

u
1wb

s
H

s
, (16a)

D

Dt
PE

u
52wb

u
H

u
1

1

2

b2
u

N2
u

DH
u

Dt
, (16b)

D

Dt
PE

s
52wb

s
H

s
1

1

2

b2
s

N2
s

DH
s

Dt
, (16c)

D

Dt
ME5

1

2
A

u
M2DH

u

Dt
1
1

2
A

s
M2DH

s

Dt
. (16d)

By looking at (16a)–(16d), we see that the saturated and

unsaturated potential energies are involved with direct

transfers to kinetic energy through the terms 2wbsHs

and 2wbuHu. In addition, the presence of the terms

DHu/Dt, andDHs/Dt indicate that they are also involved

in exchanges with the moist energy at the phase inter-

face. The role of the moist energy is to exchange energy

with PEu and PEs, and this exchange occurs only at the

phase interface. The material derivative of the total

energy is then
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DE
1

Dt
52= � (fu)1 1

2

b2
u

N2
u

DH
u

Dt
1

1

2

b2
s

N2
s

DH
s

Dt

1
1

2
A

u
M2DH

u

Dt
1
1

2
A

s
M2DH

s

Dt
. (17)

Note that the nondivergence terms are nonzero only

at the phase interface. In fact, the moist energy ME is

materially conserved at the phase interface, which in-

dicates its role as a latent energy associated with phase

changes.

To determine the values of Au and As, we require the

nondivergence terms in (17) to vanish identically:

1

2

b2
u

N2
u

DH
u

Dt
1

1

2

b2
s

N2
s

DH
s

Dt
1

1

2
A

u
M2DH

u

Dt
1
1

2
A

s
M2DH

s

Dt
5 0:

(18)

This is made easier by two observations. First, the in-

terface flux terms DHu/Dt and DHs/Dt are nonzero

only at the phase interface between saturated and un-

saturated regions, and at this interface, bu 5 bs.

Second, the relationship Hs 5 1 2 Hu allows us to

write DHu/Dt 5 2(DHs/Dt). Therefore, the previous

equation becomes2
421

2
A

u

 
1

N2
u

2
1

N2
s

!2

2
1

2

1

N2
u

1
1

2
A

s
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N2
s

2
1

N2
s

!2

1
1

2

1

N2
s

3
5b2

s

DH
s

Dt
5 0: (19)

The above equation yields the following relationship

between Au and As:

A
u
5A

s
1

N2
uN

2
s

N2
u 2N2

s

. (20)

We thus have an infinite family of conserved ener-

gies which are quadratic even in the presence of phase

changes, and differ only in the choice of Au and As. In

addition, (20) implies that ifAs$ 0, and ifN2
u .N2

s , then

the energy will be positive definite. Finally, letting As 5
0 is an appealing choice, since it allows M to represent

latent energy in the unsaturated phase that is transferred

to buoyant potential energy upon reaching saturation;

this choice results in the particularly simple expression

E
1
5

1

2
u2 1

1

2

 
b2
u

N2
u

!
H

u
1

1

2

 
b2
s

N2
s

!
H

s

1
1

2

 
N2

uN
2
s

N2
u 2N2

s

!
M2H

u
, (21)

and satisfies the conservation equation

›E
1

›t
1= � [u(E

1
1f)]5 0: (22)

The energy E1 in (21) is therefore the desired energy

that is piecewise quadratic.

Several notes about the piecewise quadratic energy in

(21) are in order. The first thing to point out is that we

could absorb the factor of (N2
uN

2
s )/(N

2
u 2N2

s ) into the

definition of M given in (14), and the resulting moist en-

ergywould then have the simpler formofM2Hu/2. Second,

notice that, because it is (piecewise) quadratic, the energy

in (21) can be used to define an inner product and a norm.

Its use as a norm is explored below in section 5 for defin-

ing an energy for empirical orthogonal function analysis.

Note, though, that (21) defines an inner product or norm

only if theHeaviside functionsHu andHs can be treated as

given functions, as in some data analysis applications.

Finally, notice that PEu, PEs, and ME are all discon-

tinuous across the phase interface, but the total potential

energy, PEu 1 PEs 1 ME, is continuous. To see this,

note that the potential energy is b2
u/(2N

2
u)1AuM

2/2 in

unsaturated regions and b2
s /(2N

2
s )1AsM

2/2 in saturated

regions, which are both continuous functions of the

variables bu and bs within the unsaturated and satu-

rated phases, respectively. Thus, to establish conti-

nuity of the potential energy over the entire domain,

all we need to do is verify that it is continuous at the phase

interface. This can be expressed mathematically as

limbu/bsb
2
u/(2N

2
u)1(Au/2)M

22b2
s /(2N

2
s )2(As/2)M

2 5 0.

To show that this limit is in fact zero, we substitute bu5 bs,

use (20), and simplify. The details are omitted for the

sake of brevity.

Recall that the relationship between the coefficients

Au and As given by (20) was obtained by forcing the

material derivative of the total energy to contain only

divergence terms. This exact same relationship could

have been obtained by instead demanding that the total

energy be continuous across the phase interface.

Also note that M2Hu is similar in spirit to the moist

latent energy Lyqy of a compressible atmosphere (e.g.,

Emanuel 1994), but also has some differences. It would

be interesting to make a thorough comparison in the fu-

ture, while for the moment we note the following com-

parison. For instance, they are similar in that they are

both latent energies; that is, they are conserved quantities

in unsaturated regions, and their energy can be accessed

due to phase changes. They differ, however, in the release

of their latent energy: the M2Hu energy is transferred to

buoyant potential energy only at the phase interface,

whereasLyqy is a source of heating or cooling throughout

the saturated region.
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d. The traditional form of the potential energy

Another version of the potential energy, one that is

not piecewise quadratic, has also been considered in the

past (e.g., Pauluis 2008; Hernandez-Duenas et al. 2013).

Here we will write this traditional form in terms of the

variables

btot
u 5 b

u
1N2

uz , (23a)

btot
s 5b

s
1N2

s z , (23b)

referred to as the total unsaturated and saturated buoy-

ancies, respectively. These two variables are both mate-

rial invariants, that is,

Dbtot
u

Dt
5 0,

Dbtot
s

Dt
5 0: (24)

Themore traditional formof the potential energy, denoted

by P, is then given by

P(btot
u ,btot

s , z)52

ðz
a

(btot
u 2N2

uz
0)H

u
1(btot

s 2N2
s z

0)H
s
dz0 ,

(25)

where a is an arbitrary reference level, Hu 5
H[btot

u 2btot
s 2 (N2

u 2N2
s )z

0], Hs 5 1 2 Hu, and the in-

tegration is performed while keeping btot
u and btot

s

constant. The details of this integration are included

in appendix B, with the explicit form of P given by

(B6). If we define a total energy E2 as

E
2
5

juj2
2

1P , (26)

then it can be shown that E2 satisfies the equation

›E
2

›t
1= � fu[(E

2
1f)]g5 0: (27)

e. Relating the two energies

We have thus derived two conserved energies. The

piecewise quadratic energy E1 is shown above in (21),

and the more traditional energy E2 in terms of potential

energy P is shown above in (26).

Here, we point out that the two energies are, in fact,

related. In appendix B, it is shown that

E
1
5E

2
1P

inv
, (28)

where Pinv denotes a material invariant term—that is, a

term which satisfies DPinv/Dt 5 0 and does not affect

energy transfers. Thus, E1 and E2 differ by a material

invariant. So, even after incorporating moisture and

phase changes into the Boussinesq equations, we are

still able to obtain a relationship between two energies

that is similar to that of the dry case in (7).

3. Anelastic equations

We now study energetics of the anelastic equa-

tions. As above, the energy can be decomposed into

four similar components (KE, PEu, PEs, ME) with

straightforward physical interpretations, but in this

case the energy is not quadratic, since the coeffi-

cients N2
u(z) and N2

s (z) are not constants. The struc-

ture of this section is similar to that of the Boussinesq

case; we will first consider the energetics for the dry

equations, and then incorporate moisture and phase

changes.

a. Energetics for the dry anelastic equations

The anelastic equations for a dry atmosphere with no

phase changes are

Du

Dt
52=f1 bẑ , (29a)

Db

Dt
1N2(z)w5 0, (29b)

= � [~r(z)u]5 0, (29c)

where f5p0/~r(z) and b is the buoyancy. In the an-

elastic case, the squared buoyancy frequency N2(z)

will no longer be constant, which precludes the exis-

tence of a conservation equation like that of (6) for a

quadratic energy. We can, however, still obtain such

an equation for a slightly altered version of (2) that

takes into account the varying nature of N2(z). Thus,

we define,

EAnelastic
2 5

juj2
2

2

ðz
a

btot 2 ~b(z0) dz0 , (30)

where the integral is performed as partial integration

with btot held fixed, and ~b(z)5
Ð z
0N

2(r) dr, and btot 5
~b(z)1 b with Dbtot/Dt 5 0. It can be shown that in the

dry anelastic case we have

›

›t
[~r(z)EAnelastic

2 ]1= � [~r(z)u(EAnelastic
2 1f)]5 0, (31)

so EAnelastic
2 is a conserved energy.

b. Energetics for the anelastic equations with
moisture and phase changes

After incorporating moisture and phase changes, the

anelastic equations are
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Du

Dt
52=f1 (b

u
H

u
1 b

s
H

s
)ẑ , (32a)

Db
u

Dt
1N2

u(z)w5 0, (32b)

Db
s

Dt
1N2

s (z)w5 0, (32c)

= � [~r(z)u]5 0, (32d)

where f5 p/~r(z), and ~r(z) is the background density

profile.

The potential energy is again defined as the integral of

the buoyancy:

P(btot
u , btot

s , z)52

ðz
a

[btot
u 2 ~b

u
(z0)]H

u

1 [btot
s 2 ~b

s
(z0)]H

s
dz0 , (33)

where the background states are defined as

~b
u
(z)5

ðz
0

N2
u(r) dr , (34a)

~b
s
(z)5

ðz
0

N2
s (r) dr . (34b)

and the total variables are defined as

btot
u 5 ~b

u
(z)1 b

u
, (35a)

btot
s 5 ~b

s
(z)1 b

s
, (35b)

where btot
u and btot

s are material invariants: Dbtot
u /Dt5 0

and Dbtot
s /Dt5 0. Note that (35a) and (35b) are analo-

gous to (23a) and (23b) in the Boussinesq case, and both

definitions will agree when N2
u and N2

s are constant.

The main result of this subsection is a decomposition

of the potential energy as

P5P
bu
1P

bs
1P

m
1P

inv
, (36)

wherePbu,Pbs,Pm, andPinv, are the saturated potential

energy, unsaturated potential energy, latent energy, and

material invariant terms of P, respectively. Upon inte-

grating (33), we find that

P
bu
52H

u

ðz
a

[btot
u 2 ~b

u
(z0)] dz0 , (37a)

P
bs
52H

s

ðz
a

[btot
s 2 ~b

s
(z0)] dz0 , (37b)

P
m
5H

u

ðzr
a

fbtot
u 2btot

s 2 [ ~b
u
(z0)2 ~b

s
(z0)]gdz0 , (37c)

andPinv is a material invariant that satisfiesDPinv/Dt5
0. The calculations leading from (33) to (37) are similar

to the ones done in the appendixes and can be found in

the online supplemental material. In brief, the termsPbu

and Pbs are similar to the potential energy in the dry

case, except they are multiplied by Heaviside functions

Hu andHs, respectively, in this case with phase changes;

and the third term Pm represents an additional moist

latent energy.

Note that zr, not z, appears as the upper limit of inte-

gration in (37c), where zr is the solution to the equation

btot
u 2 btot

s 5 ~b
u
(z

r
)2 ~b

s
(z

r
) , (38)

where btot
u and btot

s are regarded as fixed values. In-

tuitively, zr is essentially a lifted condensation level

(LCL), since (38) defines zr as the level where the un-

saturated and saturated buoyancies, bu and bs, are equal,

which is the condition for saturation. Also notice that zr
is a material invariant, since it is a function of the ma-

terial invariants btot
u and btot

s , and therefore zr satisfies

Dzr/Dt 5 0.

Also notice that Pm in (37c) is analogous to the moist

latent energy }M2Hu in the Boussinesq case in (21). As

such, (37c) could possibly be used as a definition of a

variable like M in the anelastic case.

To see the different roles of the components ofP, one

can examine the energy transfers:

DP
bu

Dt
52b

u
H

u
w2

�ðz
a

[btot
u 2 ~b

u
(z0)] dz0

�
DH

u

Dt
, (39a)

DP
bs

Dt
52b

s
H

s
w2

�ðz
a

[btot
s 2 ~b

s
(z0)] dz0

�
DH

s

Dt
, (39b)

DP
m

Dt
5

�ðzr
a

fbtot
u 2 btot

s 2 [ ~b
u
(z0)2 ~b

s
(z0)]gdz0

�
DH

u

Dt
,

(39c)

DP
inv

Dt
5 0: (39d)

Notice that the only terms that are involved in direct

transfers of energy with kinetic energy are the termsPbu,

and Pbs. The term Pinv is a material invariant, and Pm,

which is given by (37c), transfers energy only at the phase

interface. Furthermore, by combining (39a)–(39c), one

can see that

D

Dt
P

bu
1P

bs
1P

m

� �
52wb , (40)

where we have also used that zr is equal to z at the phase

interface.Hence, thematerial derivative ofPm is precisely
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what cancels the interface flux terms that arise in the flux

of the buoyant potential energy terms in (39a) and (39b).

So from this perspective, Pm is analogous to the moist

energy of (13d) in that both terms ensure that the total

potential energy is continuous, by supplying moist latent

energy at the phase interface. In addition, it can be shown

that

›

›t

"
~r(z)

 
juj2
2

1P

!#
1= �

"
~r(z)u

 
juj2
2

1P1f

!#
5 0

(41)

so that the total energy is conserved.

c. Alternative energy, anelastic M, and connection
with Boussinesq case

We end this section by offering a slightly different

definition of P. The alternative P will serve two pur-

poses: (i) to make a connection with the Boussinesq

case, and (ii) to motivate a definition of anM variable in

the anelastic case, and to offer a physical interpretation

of that M.

To these ends, we define P* as

P*(btot
u ,btot

s , z)52

ðz
a1

[btot
u 2 ~b

u
(z0)]H

u
dz0

2

ðz
a2

[btot
s 2 ~b

s
(z0)]H

s
dz0 , (42)

where a1 and a2 are reference heights. We note that P*

differs from P given by (33) by a material invariant

(which can be seen by splitting the integral from a1 to z

into two integrals, one from a1 to a and another from a to

z, and similarly for a2). A convenient and physically

relevant choice (as discussed further below) is to define

a1 5 ~b21
u (btot

u ) and a2 5 ~b21
s (btot

s ), so that a1 and a2 cor-

respond to the unsaturated and saturated levels of

neutral buoyancy, respectively. Then, as was done forP,

we can decompose P* into its unsaturated, saturated,

latent, and invariant components, which are denoted by

P*
bu
, P*

bs
, P*

m, and P*
inv
, respectively.

In the special case of Boussinesq, whereN2
u andN

2
s are

constants, the expressions for P*
bu
, P*

bs
, and P*

m simplify

to the quadratic unsaturated, saturated, and moist en-

ergies given in (21). In other words, we have, in the

Boussinesq case,

P*
bu
5

1

2

 
b2
u

N2
u

!
H

u
, (43a)

P*
bs
5

1

2

 
b2
s

N2
s

!
H

s
, (43b)

P*
m 5

1

2

 
N2

uN
2
s

N2
u 2N2

s

!
M2H

u
. (43c)

We note that this connection with the Boussinesq case

arises only for the specific choice of a1 and a2 as levels of

neutral buoyancy as described above. If different values

of a1 and a2 are used, or if the earlierP from (33) is used

instead of the alternative P* from (42), then the

connection with the Boussinesq case is somewhat

spoiled and (43) would have additional terms on the

right-hand side.

Finally, we consider the question: How can an M

variable be defined in the anelastic case? In particular,

note that we did not earlier define an M variable in the

anelastic case, whereas in the Boussinesq case we had

definedM before describing the energetics. The formula

in (43c) now suggests a definition of theM variable in the

anelastic case, since

P*
m 5H

u

(ðzr
a1

[btot
u 2 ~b

u
(z0)]dz0 2

ðzr
a2

[btot
s 2 ~b

s
(z0)] dz0

)
.

(44)

By comparing (43c) and (44), one is motivated to define

M
anelastic

5

(ðzr
a1

[btot
u 2 ~b

u
(z0)] dz0

2

ðzr
a2

[btot
s 2 ~b

s
(z0)] dz0

)1/2

, (45)

since it would be proportional to the Boussinesq def-

inition of M in the special case of constant N2
u and N2

s .

An alternative definition of an anelastic M variable

was proposed by Wetzel et al. (2019). An advanta-

geous property of Maneastic here is its physical in-

terpretation: it is related to convective available

potential energy (CAPE) (e.g., Moncrieff and Miller

1976; Emanuel 1994; Hernandez-Duenas et al. 2019).

In particular, notice that (45) involves the differ-

ence between an unsaturated CAPE and a saturated

CAPE, since zr is similar to a lifted condensation level

[see its definition in (38)] and a1 and a2 are levels of

neutral buoyancy. It would be interesting to investi-

gate the variable Maneastic in more thorough detail in

the future.

4. Other moist systems

In this section, we will examine several systems fea-

turing other microphysical parameterizations. We will

start by looking at energetics of the anelastic equations

when Kessler microphysics are used. The Kessler case
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allows an exploration of the effects of an additional water

constituent, rainwater, and associated source terms and

their influence on energetics. Then a limiting form of the

Kessler scheme will be considered, called the FARE

microphysics scheme (Hernandez-Duenas et al. 2013).

The FARE case is interesting because it includes rain-

water and precipitation, yet, unlike theKessler case, it has

an energy that is conserved (aside from a single dissipa-

tion term, due to precipitation at the surface).

a. Warm-rain microphysics

The anelastic equations with warm-rain microphysics

can be used to model a moist atmosphere with three

phases of water: cloud water qc, rainwater qr, and water

vapor qy (Kessler 1969; Grabowski and Smolarkiewicz

1996). They are

Du

Dt
52=f1 (b

u
H

u
1 b

s
H

s
)ẑ , (46a)

Db
u

Dt
1N2

u(z)w2
g
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]
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1 1

!
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r
1C

r
2E

r
) , (46b)

Db
s

Dt
1N2

s (z)w1
g

~r(z)

›

›z
[~r(z)V

T
q
r
]5 0, (46c)

Dq
r

Dt
2

1

~r(z)

›

›z
[~r(z)V

T
q
r
]5A

r
1C

r
2E

r
, (46d)

= � [~r(z)u]5 0, (46e)

where Ar is the autoconversion of cloud water into

rainwater,Cr is the collection of cloud water by rain, and

Er is the evaporation of rainwater into water vapor,VT is

the rainfall velocity, and we have assumed that super-

saturation cannot occur, and again f5 p/~r(z). Many

other formulations of cloud microphysics are in use,

such as simple formulations (e.g., Vallis et al. 2019) and

more complex formulations including number concen-

trations of droplets and/or ice microphysics (e.g., Seifert

and Beheng 2001, 2006); it would be interesting to an-

alyze these or other formulations, but we focus on the

Kessler system here as an example case. Additional

details regarding the Kessler scheme can be found in

appendix A.

Now consider energetics, and take the potential energy

P to have the same definition as in the nonprecipitating

anelastic case from (33). Despite the increased micro-

physical complexity of the Kessler system, we will still

obtain the exact same expression for P when it is in-

tegrated. That is, P can still be integrated and decom-

posed as in (36)–(37). The energy evolution equation

satisfied by P in the Kessler scheme will, however,

differ from the one in the purely anelastic case. Here, it

takes the form

›
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s 2 ( ~b

u
2 ~b

s
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(47)

where Sr5Ar1Cr2Er. The reason for the terms on the

right-hand side of (47) is that bu and bs are not material

invariants, and so their derivatives will appear when we

differentiate P. As a result, an energy principle can be

written down for the case of Kessler microphysics, but the

energy is not conserved, due to rain falling at velocity VT

and due tomicrophysical source terms Sr5Ar1Cr2Er.

b. FARE microphysics

In this section, we consider energetics for a system

that includes precipitation yet still has a piecewise

quadratic energy, and the energy is conserved (aside

from a single dissipation term, due to precipitation at

the surface).

The system of interest here is the fast autoconversion

and rain evaporation model, or FARE model, first in-

troduced by Hernandez-Duenas et al. (2013). This

model can be obtained from the anelastic Kessler model

by making several assumptions. First, we assume that

water vapor is converted directly into rainwater. This

obviates the need for a qc variable as well as expressions

for Ar and Cr, and constitutes the fast autoconversion
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assumption. Second, rainwater, which is assumed to fall

at a constant rate VT, is instantly evaporated in unsaturated

regions until saturation is reached. This amounts to the fast

rain evaporation assumption and completes a basic de-

scription of the FARE model, the equations of which are

Du

Dt
52=f1 (b

u
H

u
1 b

s
H

s
)ẑ , (48a)

Db
u

Dt
1N2

uw2 gV
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5 0, (48b)
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1N2

s w1 gV
T

›q
r

›z
5 0, (48c)

= � u5 0: (48d)

Note that these equations are essentially the same as the

nonprecipitatingBoussinesq equations from section 2b, except

additional VT terms are present and represent precipitation.

Recall that in section 2b, we found an infinite family of

conserved, quadratic energies of themoist, nonprecipitating

Boussinesq equations of (8a)–(8d). We now show that

by including the microphysics of the FAREmodel, that

is, by incorporating a nonzero value of VT, we can

obtain a unique quadratic energy, which under appro-

priate circumstances, will be positive definite.

Our starting point, then, is the energy defined by

(13a)–(13d), and (20), and the goal is to determine

values for the constants Au and As that appear in the en-

ergy. Differentiating each component of the energy under

these new microphysical assumptions now results in

D

Dt
KE52= � (fu)1wb

u
H

u
1wb

s
H

s
, (49a)

D

Dt
PE

u
52wb

u
H

u
1
b
u
gV

T

N2
u

 
R

yd
2

L
y

c
p
u
0

!
›q

r

›z
H

u

1
1

2

b2
u

N2
u

DH
u

Dt
, (49b)

D

Dt
PE

s
52wb

s
H

s
2
b
s
gV

T

N2
s

›q
r

›z
H

s
1

1

2

b2
s

N2
S

DH
s

Dt
, (49c)

D

Dt
ME5A

u
M
DM

Dt
H

u
1

1

2
A

u
M2DH

u

Dt
1A

s
M
DM

Dt
H

s

1
1

2
A

s
M2DH

s

Dt
,

(49d)
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Since there is no rainfall in unsaturated regions in the

FARE model, it follows that (›qr/›z)Hu 5 0. Using this,

alongwith the relationshipbetweenAuandAsgivenby (20),

we can write the material derivative of the total energy as
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(51)

which appears to have nondivergence terms on the right-

hand side.

Now we can determine the unique value of As such

that (51) contains only divergence terms. This can be

accomplished by rewriting that equation in terms of M

and qr. In particular, the goal is to write the bs›qr/›z term

as a sum of a qr›qr/›z term and aM›qr/›z term, and then

to choose As to make the M›qr/›z term vanish. To this

end, observing that
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we can simplify (51) into
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We can now solve for As from the constraint that
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Doing so, we find that
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Then, from (20), we have
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With these values of Au and As, the total energy E is

given by
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which completes the derivation of a piecewise

quadratic energy.

Note from(56)and(57) that thecoefficientsAuandAswillbe

positive if (N2
u/N

2
s ), [(Ly/cpu0)2Ryd].Weknow thatRyd’

0.61andLy/(cpu0)5O(10), so the ratioN2
u/N

2
s can be roughly

as large asO(10), and so the condition on the ratio of the

squared buoyancy frequencies to ensure positivity of Au

and As allows a reasonably wide range of values.

The conservation law for theenergy in (58) takes the form
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(59)

Thus, the effect of precipitation is an energy flux pro-

portional to VTq
2
r . Upon integrating this conservation

law in space, one can see that theVTq
2
r term represents a

sign-definite sink of energy at the lower boundary of the

domain. In other words, when precipitation falls to the

surface, it represents a loss of water and also a loss of

energy from the system.

5. Application to EOF analysis

In this section, we use the ideas from the piecewise-

quadratic energy and apply them to empirical orthog-

onal function (EOF) analysis, or principal component

analysis (PCA). In the EOF analysis, the goal is to

decompose a signal (in our case, a variable of an at-

mospheric flow) into a set of spatial and tempo-

ral patterns, and to identify the patterns with the largest

energy or variance. In its most common form, an

EOF analysis would use the standard L2 energy. Here,

the goal is to see if we can use the concepts of the

piecewise-quadratic energy from (21), in order to in-

clude information about phase changes, to potentially

better identify the main modes of variability of moist

dynamics.

We begin with a brief review of EOF methods. In

EOF analysis, we assume that we have NT time sam-

ples of a scalar variable, S(x, t), located at N spatial

points. We denote the N values of S at time ti by the

vector

si 5 (si1, s
i
2, . . . , s

i
N)

T
. (60)

The data matrix S is then formed by the column vec-

tors si:

S5 (s1, s2, . . . , sNT ). (61)

The EOFmodes are then the eigenvectors of the sample

covariance matrix (1/NT)SS
T.

To motivate the variables on which to perform the

EOF analysis, recall from (21) that the energy
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(62)

is a piecewise quadratic, positive definite conserved

quantity, and it induces a natural inner product (as-

suming the values of the Heaviside functions Hu(x, t)

andHs(x, t) can be taken as given values, as in the case

of the present data analysis application). While the

EOF analysis below will deviate from using the full

form of this energy, we explain the deviations further

below and momentarily describe the full energy to aid

the discussion. Consider the full state vector y, where

y5 (u, y,w,B,M*), (63)

where

B5
b
u

N
u

H
u
1

b
s

N
s

H
s

(64)

and

M*5MH
u
. (65)

Then (62) can be written as E1 5 yTAy, where
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A5
1

2

0
BBBBBBBBBBB@

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0
N2

uN
2
s

N2
u 2N2

s

1
CCCCCCCCCCCA
. (66)

In writing E1 5 yTAy, we have assumed that B2 5
(b2

u/b
2
u)Hu 1 (b2

s /N
2
s )Hs, which is valid if H2

u 5Hu,

H2
s 5Hs, and HuHs 5 0. From the standpoint of data

analysis, this means that all of our data points are away

from the phase interface. In what follows, to examine the

effect of phase changes in the simplest possible setting, we

will consider the univariate case rather than the case of the

full vector y, andwewill take the single variable to be either

B (as a setup with phase changes) or bu (as a comparison

case with standard L2 energy without phase changes).

We apply EOF analysis to simulations generated by

the University of California, Los Angeles, large-eddy

simulation (UCLA-LES) model based on data from

the Rain in Cumulus Over the Ocean (RICO) study

(Stevens et al. 2005; Rauber et al. 2007; Stechmann

2014). The focus of this study is on shallow cumulus

clouds, which are clouds that extend only a few kilometers

above Earth’s surface. While these clouds do not involve

ice, and often do not rain, they nevertheless incorporate

both moisture and phase changes. The simulation is for

5 days with NT 5 7195 time samples. For spatial resolu-

tion, we use a two-dimensional setup with Nx 5 128 and

Nz5 100 grid points with grid spacings of 100 and 40m in

the horizontal and vertical directions, respectively. In

Fig. 1, snapshots of the vertical velocity and cloud cov-

erage are shown at approximately 2.4 days. (See Fig. 2

for a time series of vertical velocity and cloud fraction.)

Several additional steps are used in carrying out our

analysis. First, to obtain enough data to ensure smooth-

ness of the resulting EOFs, we perform an ensemble of

simulations. Each ensemble member uses a different

initial condition as random temperature perturbations

are inserted below 200m, with a different random seed

used for each member. Extending the method of EOF

analysis on data produced from a single simulation to

data from an ensemble is straightforward. To that end,

suppose we have an ensemble with Ne members, and

denote the kth member by Sk(x, t). The value of Sk at

time ti and location xj is denoted by

si,k 5 (si,k1 , si,k2 , . . . , si,kN )
T
. (67)

The data matrix of ensemble member k is then given by

Sk 5 (s1,k, s2,k, . . . , sNT ,k), (68)

and the corresponding ensemble covariance matrix Ce is

C
e
5

1

N
T

�
Ne

k51

(Sk)(Sk)
T
. (69)

Second, we use deviations from the horizontal av-

erages of B and bu as our variables. That is to say, we

subtract off the quantities (1/Lx)
Ð
B(x0, z, t) dx0 and

(1/Lx)
Ð
bu(x

0, z, t) dx0 from B and bu, respectively, where

Lx denotes the horizontal domain length. Hence the data

FIG. 1. Snapshots of the (top) vertical velocity w (m s21) and

(bottom) cloud water qc (g kg
21) to illustrate the spatial structures

present in the shallow convection simulation data used in the EOF

analysis.

FIG. 2. Time series of the (top) maximum vertical velocity and

(bottom) area cloud fraction to illustrate the intermittent evolution

in time of the shallow convection simulation data used in the EOF

analysis.
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are centered to have a horizontal mean of zero at each

vertical level. Finally, and perhaps most importantly,

N2
u(z) and N2

s (z) are not uniformly positive over the do-

main. Note that while the buoyancy frequencies depend

on both space and time, we approximate them as purely

height-dependent functions according to (11a) and (11b).

As can be seen in Fig. 3, N2
u(z), 0 in the lower 500m

of the domain, within the subcloud layer, which is well

mixed. To use N2
u(z) to define a positive energy, it will

need to be modified in this layer, and we modify it by

simply increasingN2
u(z) to be 1024 s21 at any level where

it is originally less than 1024 s21, as illustrated in Fig. 3.

This type of modification is also tacitly in place in

other studies whenever a standard L2 energy is used to

analyze data within a well-mixed or unstable layer.

For the other buoyancy frequencyN2
s (z), negative values

occur over a wider range of heights, so we simply set

N2
s (z)5 (1/10)N2

u(z) at all heights to define a positive

N2
s (z). Other choices of scale factors larger than 1/10,

such as 1/2, were also considered, but they were found to

produce leading EOFs that were similar to the case of an

energy without phase changes; it would be interesting to

examine this choice in further detail in the future. Over-

all, these definitions of N2
u(z) and N2

s (z) involve some

modification from the theoretical piecewise-quadratic

energy definition, but they preserve the essence of

piecewise-quadratic energy in the sense that N2
s (z) will

be significantly smaller than N2
u(z) and will therefore

create a naturally enhanced weighting of buoyancy

fluctuations in the saturated phase (i.e., within clouds),

since the reciprocal N22
s (z) is the weighting factor.

The comparison of EOFs for the standard L2 en-

ergy and the piecewise-quadratic energy are shown in

Figs. 4–6. In terms of variance or energy, in Fig. 4, the

two cases appear to capture roughly similar amounts of

energy in eachmode. However, in terms of EOF structures,

the two cases show substantial differences. Figures 5 and 6

show the first fourEOFs of bu andB, respectively. Themost

important feature is that thefirst twobumodes are limited to

the lower part of the domain, whereas the first twoBmodes

extend into the upper part of the domain, which means that

theBmodes capture cloud variability while the bumodes

capture mainly the subcloud layer.

One way of understanding the significance of these

qualitative differences of the modes is to look at time se-

ries of the fraction of the domain covered by clouds. As

can be seen in Figs. 1 and 2, the domain is covered by few

clouds for most of the simulation. It is, however, punctu-

ated by brief periods of relatively high cloud coverage,

which suggests that clouds display intermittency in both

space and time. In terms of the standard L2 energy, the

cloud variability contributes little to the energy, due to its

intermittency. On the other hand, the piecewise-quadratic

energy gives different weight, N22
u versus N22

s , to the

unsaturated versus saturated regions, which allows the

cloud variability to make a substantial contribution to

the energy and manifest itself in the leading EOFs.

6. Discussion and conclusions

In summary, we have examined energetics for moist

atmospheres with phase changes. We first considered a

Boussinesq system with moisture and phase changes, and

in one of the main results, we found a piecewise-quadratic,

positive definite conserved energy. For this same system,

we also considered a second definition of an energy,

based on a potential energyP that generalizes a rgz-like

FIG. 3. An illustration of the adjustment process for N2
u . The red

curve showsN2
u and the blue shows how it is changed for use in the

EOF analysis.
FIG. 4. Eigen values of (a) the B covariance matrix as a fraction

of total energy and (b) the bu covariance matrix as a fraction of

total energy.

NOVEMBER 2019 MARS I CO ET AL . 3581



potential energy. While the P-based energy is not mani-

festly positive definite, it was shown to be equal to the

piecewise-quadratic energy, plus some additional mate-

rial invariant terms.

Two aspects are perhaps most important in general-

izing the dry quadratic energy to the moist piecewise-

quadratic energy. First, by using Heaviside functionsHu

andHs to represent phase changes, it becomes relatively

straightforward to account for the distinction between

the two phases. For example, the Heaviside functions

are useful in carrying out the integration in the P-based

potential energy, which then demonstrates the rela-

tionship between theP-based energy and the piecewise-

quadratic energy. Second, the contribution of the variable

M is related to an additional eigenmode of the moist

system that is not present in the dry system, and it is

natural that one component of the moist energy would

be associated with this additional eigenmode.

Increasing amounts of complexity were then incor-

porated beyond the moist Boussinesq equations. As a

first step, in section 3, the moist anelastic equations

were considered. For the anelastic system, the energy

is not quadratic, even in the dry case. Nevertheless,

it was shown that the potential energy can be de-

composed into three components: buoyant potential

energy in the unsaturated phase, buoyant potential

energy in the saturated phase, and a moist latent en-

ergy that is analogous to the M contribution from the

Boussinesq case. In adding further complexity, we con-

sidered Kessler warm-rain microphysics, in which case

we cannot in general obtain a conserved energy due to

the presence of source terms representing rain and cloud

processes. As a final case, we considered FARE micro-

physics, which is a simplified version of warm-rain micro-

physics. The case of FARE microphysics is interesting

because, like Kessler microphysics, it includes precipita-

tion; however, unlike Kessler microphysics, FARE mi-

crophysics was shown to have a piecewise-quadratic

energy, and the energy is conserved, aside from a sign-

definite dissipation termdue to precipitation at the surface.

As an application, we considered an empirical or-

thogonal analysis that uses a piecewise-quadratic energy

as weighted norm, in place of the standard L2 norm.

In comparing the leading EOFs produced by these two

cases (i.e., by using piecewise-quadratic norm versus

standard L2 norm), substantially different EOF modes

FIG. 5. The first four EOFs based on the bu covariance with standard L2 energy norm.
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were seen. The piecewise-quadratic norm is a weighted

norm that incorporates information about the phase

changes, and, as such, it produces EOFs that are rep-

resentative of cloud variability. It would be interesting

in the future to further investigate and refine this type

of weighted norm and its applicability to observational

and computational datasets.
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APPENDIX A

Reformulation of Moist Boussinesq Equations in
Terms of Unsaturated and Saturated Buoyancies and

Extension to the Kessler Scheme

We derive (8a)–(8d). Our starting point is the system

Du

Dt
52=f1 bẑ , (A1a)

Du
e

Dt
1

d~u
e

dz
w5 0, (A1b)

Dq
t

Dt
1
d~q

t

dz
w5 0, (A1c)

= � u5 0 (A1d)

where p0 is the pressure, r0 is a constant background

density, f 5 p0/r0, u(x, t) is the velocity vector, ue is the

equivalent potential temperature anomaly, and qt is

the anomalous total water mixing ratio. The buoyancy,

b, can be written in terms of ue, qt, and z, and will be

described below. We assume that all thermodynamic

variables have been decomposed into background func-

tions of height and anomalous parts, so that, for example,

utote 5 ~ue(z)1 ue(x, t).

The total water qt is the sum of water vapor qy and

liquid water ql and can be written as

q
t
5q

y
1 q

l
. (A2)

FIG. 6. The first four EOFs based on the B covariance with phase changes in the energy.
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To obtain equations for qy and ql, we adopt a prescribed

saturation mixing ratio qtot
ys (z) that depends on height

alone, in part because it allows explicit expressions to be

derived in what follows. In making this approximation, we

have assumed thatTtot andptot are close to the background

states ~p and ~T, so that qtot
ys (T

tot, ptot)’ qtot
ys [

~T(z), ~p(z)].

We then have

q
y
5min[q

t
,q

ys
(z)], (A3a)

q
l
5max[0, q

t
2 q

ys
(z)]. (A3b)

The equivalent potential temperature is defined as

u
e
5 u1

L
y

c
p

q
y
, (A4)

where u is the potential temperature, the latent heat

factor is Ly ’ 2.5 3 106 J kg21, and specific heat is cp ’
103 J kg21K21; this definition of ue is a linearization of

usual definitions (e.g., Emanuel 1994; Stevens 2005), and

this linearized version is helpful for the exposition here.

Using the equations above, we can obtain an expression

for the potential temperature:

u5

8>>>><
>>>>:

u
e
2

L
y

c
p

q
t

if q
t
,q

ys
(z)

u
e
2

L
y

c
p

q
ys
(z) if q

t
$ q

ys
(z) .

(A5)

The buoyancy b is defined as

b5 g

�
u

u
0

1R
yd
q
y
2 q

l

�
, (A6)

where u0 ’ 300K is a constant background potential

temperature, g ’ 9.8m s22 is the acceleration due to

gravity andRyd5 (Ry/Rd)2 1’ 0.61, whereRd is the gas

constant for dry air and Ry is the gas constant for water

vapor. The buoyancy changes form based on phase, so

that we can write

b5 b
u
H

u
1 b

s
H

s
, (A7)

where bu and bs are defined to be the buoyancies in un-

saturated and saturated regions, respectively. The functions

Hu andHs areHeaviside functions that indicate unsaturated

and saturated phases, respectively, and are defined as

H
u
5

�
1 if q

t
, q

ys
(z)

0 if q
t
$ q

ys
(z) ,

(A8)

and Hs 5 1 2 Hu. Using the equations above, we can

show that bu and bs are defined as

b
u
5 g

"
u
e

u
0

1

 
R

yd
2

L
y

c
p
u
0

!
q
t

#
, (A9a)

b
s
5 g

"
u
e

u
0

1

 
R

yd
2

L
y

c
p
u
0

1 1

!
q
ys
(z)2 q

t

#
, (A9b)

Differentiating (A9a) and (A9b), and using (A1b) and

(A1c) results in

Db
u

Dt
1N2

uw5 0, (A10a)

Db
s

Dt
1N2

s w5 0, (A10b)

where the buoyancy frequencies N2
u and N2

s are

N2
u 5 g

d

dz

"
~u
e

u
0

1

 
R

yd
2

L
y

c
p
u
0

!
~q
t

#
, (A11a)

N2
s 5 g

d

dz

"
~u
e

u
0

2

 
R

yd
2

L
y

c
p
u
0

1 1

!
q
ys
(z)2 ~q

t

#
. (A11b)

Note that an advantage of formulating the equations in

terms of bu and bs is that it leads to a particularly simple

phase interface condition; bu 5 bs. This can be seen by

observing that when qt5 qys, (A9a) and (A9b) are equal.

In the Kessler scheme, the diagnostic equations for

water vapor qy and cloud water qc are

q
y
5

�
q
t
2 q

r
if q

t
2 q

r
# q

ys
(z)

q
ys
(z) if q

t
2 q

r
. q

ys
(z)

(A12)

and

q
c
5 q

t
2 q

r
2 q

y
. (A13)

The buoyancy now includes additional moisture terms

and takes the form

b5 g

�
u

u
0

1R
yd
q
y
2 q

r
2 q

c

�
. (A14)

In saturated regions, qt 2 qr $ qys, and in un-

saturated regions, qt 2 qr , qys, and it follows that

the buoyancy in the unsaturated and saturated regions,

are, respectively,

b
u
5 g

"
u
e

u
0

1

 
R

yd
2

L
y

c
p
u
0

!
q
t
2

 
R

yd
2

L
y

c
p
u
0

1 1

!
q
r

#

(A15)

and
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b
s
5 g

"
u
e

u
0

1

 
R

yd
2

L
y

c
p
u
0

1 1

!
q
ys
2q

t

#
, (A16)

where the saturation condition in terms of bu and bs is

still conveniently expressed as bu 5 bs.

APPENDIX B

Integrating P for the Boussinesq Equations

In this section, we provide the details of how to

perform the integration of the potential energy P in

sections 2d and 2e. First, we integrate the term

2(btot
u 2N2

uz
0)Hu. After an integration by parts, noting

that, formally,

d

dz
H[btot

u 2 btot
s 2 (N2

u 2N2
s )z]

52(N2
u 2N2

s )d[b
tot
u 2 btot

s 2 (N2
u 2N2

s )z] ,

we have

2

ðz
a

(btot
u 2N2

uz
0)H

u
dz0 5

(btot
u 2N2

uz
0)2

2N2
u

H[btot
u 2 btot

s 2 (N2
u 2N2

s )z
0]

					
z

a

1

ðz
a

(btot
u 2N2

uz
0)2

2N2
u

(N2
u 2N2

s )d[b
tot
u 2 btot

s 2 (N2
u 2N2

s )z
0] dz0 . (B1)

The first term on the right hand side of (B1) is straight-

forward to evaluate:

(btot
u 2N2

uz
0)2

2N2
u

H[btot
u 2 btot

s 2 (N2
u 2N2

s )z
0]

					
z

a

5
(btot

u 2N2
uz)

2

2N2
u

H[btot
u 2 btot

s 2 (N2
u 2N2

s )z]

2
(btot

u 2N2
ua)

2

2N2
u

H[btot
u 2btot

s 2 (N2
u 2N2

s )a]

5
b2
u

2N2
u

H
u
2

[b
u
1N2

u(z2 a)]
2

2N2
u

Hfb
u
2 b

s
1 [N2

u 2N2
s (z2 a)]g, (B2)

where we have used the fact that btot
u 5 bu 2N2

uz and

Hu 5 H(bu 2 bs).

Now we focus on the second term on the right hand

side of (B1). To integrate this term, we multiply the

integrand by the characteristic function of the interval

[a, z], which is H(z0 2 a) 2 H(z0 2 z), and inte-

grate over the entire real line. Doing this ensures

that the zero of the delta function’s argument,

z0 5 (btot
u 2 btot

s )/(N2
u 2N2

s ), is actually within the re-

gion of integration. Therefore,

ðz
a

(btot
u 2N2

uz
0)2

2N2
u

(N2
u 2N2

s )d[b
tot
u 2 btot

s 2 (N2
u 2N2

s )z
0]dz0

5

ð‘
2‘

[H(z0 2 a)2H(z0 2 z)]
(btot

u 2N2
uz

0)2

2N2
u

(N2
u 2N2

s )d[b
tot
u 2 btot

s 2 (N2
u 2N2

s )z
0]dz0

5

"
H

 
btot
u 2btot

s

N2
u 2N2

s

2 a

!
2H

 
btot
u 2 btot

s

N2
u 2N2

s

2 z

!#
1

2N2
u

"
btot
u 2N2

u

 
btot
u 2 btot

s

N2
u 2N2

s

!#2

5 fH[btot
u 2 btot

s 2 (N2
u 2N2

s )a]2H[btot
u 2 btot

s 2 (N2
u 2N2

s )z]g
1

2N2
u

"
btot
u 2N2

u

 
btot
u 2 btot

s

N2
u 2N2

s

!#2
, (B3)
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where we have used the fact that

H

 
btot
u 2 btot

s

N2
u 2N2

s

2 a

!
5H[btot

u 2 btot
s 2 (N2

u 2N2
s )a]

and

H

 
btot
u 2 btot

s

N2
u 2N2

s

2 z

!
5H[btot

u 2 btot
s 2 (N2

u 2N2
s )z] .

Therefore,

2

ðz
a

(btot
u 2N2

uz
0)H

u
dz0 5

b2
u

2N2
u

H
u
2

[b
u
1N2

u(z2 a)]
2

2N2
u

Hfb
u
2 b

s
1 [N2

u 2N2
s (z2 a)]g

2
1

2N2
u

"
btot
u 2N2

u

 
btot
u 2 btot

s

N2
u 2N2

s

!#2
H[btot

u 2 btot
s 2 (N2

u 2N2
s )z]

1
1

2N2
u

"
btot
u 2N2

u

 
btot
u 2 btot

s

N2
u 2N2

s

!#2
H[btot

u 2 btot
s 2 (N2

u 2N2
s )a] , (B4)

whichprovides anexplicit expression for the integral in (B1).

Similar to the integral of (btot
u 2N2

uz
0)Hu from (B1),

the potential energy P also includes an integral

of 2(btot
s 2N2

s z)Hs. To evaluate this latter integral,

a procedure analogous to the one just carried shows

that

2

ðz
a

(btot
s 2N2

s z
0)H

s
dz0 5

b2
s

2N2
s

H
s
2

1

2N2
s

[b
s
1N2

s (z2 a)]
2

1
[b

s
1N2

s (z2 a)]
2

2N2
s

Hfb
u
2 b

s
1 [N2

u 2N2
s (z2 a)]g

1
1

2N2
s

"
btot
s 2N2

s

 
btot
u 2 btot

s

N2
u 2N2

s

!#2
H[btot

u 2 btot
s 2 (N2

u 2N2
s )z]

2
1

2N2
s

"
btot
s 2N2

s

 
btot
u 2btot

s

N2
u 2N2

s

!#2
H[btot

u 2 btot
s 2 (N2

u 2N2
s )a] (B5)

Adding (B4) and (B5) and a great deal of simplifying yields

P5
b2
u

2N2
u

H
u
1

b2
s

2N2
s

H
s
1

N2
uN

2
s

2(N2
u 2N2

s )
M2H

u

2
1

2N2
s

[b
s
1N2

s (z2 a)]
2

2
1

2N2
u

[b
u
1N2

u(z2 a)]
2
H[b

u
2 b

s
1 (N2

u 2N2
s )(z2 a)]

1
1

2N2
s

[b
s
1N2

s (z2 a)]
2
H[b

u
2 b

s
1 (N2

u 2N2
s )(z2 a)]

2
N2

uN
2
s

2(N2
u 2N2

s )
M2H[b

u
2 b

s
1 (N2

u 2N2
s )(z2 a)] . (B6)

Notice that, on the right-hand side, the first three terms

are components of the piecewise quadratic energy, and the

rest of the terms are functions of threematerial invariants:

M, btot
u 5 bu 1N2

uz, and btot
s 5 bs 1N2

s z. To conclude this
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appendix, we point out that choosing a 5 zr would result

in E1 5 E2, where E1 is given by (21) and E2 by (26).
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