In the calculus notes, Chapter 1, Section 12: 9, 10, 11, 12, 13, 14, 15(b, c, e), 16, and

A. Let \(P(x_0, y_0, z_0) \) and \(\vec{v} = \langle v_1, v_2, v_3 \rangle \), with \(\vec{v} \neq \vec{0} \) be given. Write down the distance from the point described by the parametric equations
\[x = x_0 + v_1 t, \quad y = y_0 + v_2 t, \quad z = z_0 + v_3 t, \]
to another point \(S(a, b, c) \), as a function, \(d(t) \), of time. Use 221 tools and the formula for the cross product to show that the minimum value of \(d(t) \) equals
\[d = \frac{|\vec{PS} \times \vec{v}|}{|\vec{v}|}. \]

B. Find the volume of the tetrahedron with corners at \(O(0,0,0), A(1,2,0), B(0,2,1), \) and \(C(1,0,1) \).

C. Let \(\vec{a} = \langle a_1, a_2 \rangle \) be a nonzero 2D vector and let \(\vec{u} = \langle u_1, u_2, u_3 \rangle \) be a nonzero 3D vector. Describe in words how you might find a nonzero 2D vector \(\vec{b} \) orthogonal to \(\vec{a} \) and a nonzero 3D vector \(\vec{v} \) orthogonal to \(\vec{u} \). Show that your approach works by finding vectors orthogonal to each of the following:
\[\langle 1, -3 \rangle, \quad \langle 1, 0 \rangle, \quad \langle 0, 1 \rangle, \quad \langle 7, -1.5, 2 \rangle, \quad \langle 0, 1, 0 \rangle, \quad \langle 0, 0, -3 \rangle. \]

D. Find the distance from the origin to the plane containing \(P(1,0,0), Q(1,2,0), \) and \(R(0,0,-3) \).

E. Find the parametric equations for the line that passes through the origin and is orthogonal to the plane containing the points \(P(a,0,0), Q(0,b,0), \) and \(R(0,0,c) \) (\(a, b, c \neq 0 \)). At what point do this line and this plane intersect?

F. Do the vector equations \(\vec{r}(t) = \langle t, 2t, -t \rangle \) and \(\vec{s}(t) = \langle 1 + 2t, 2 + 4t, -1 - 2t \rangle \) describe the same line? Do the equations \(x + 2y - z = 3 \) and \(2x + 4y - 2z = 4 \) describe the same plane?