1. Recall that the dictionary order on \(\mathbb{Q}+i\mathbb{Q} := \{ p+iq : p, q \in \mathbb{Q} \} \) is given by \(p+iq < p'+iq' \) if \(p < p' \), or if \(p = p' \) and \(q < q' \). Prove that this is an order.

2. Let \(K \) be a field. Prove that for all \(x, y, z \in K \), if \(x \neq 0 \), and \(xy = xz \), then \(y = z \). This implies that if \(xy = 0 \), then \(x = 0 \) or \(y = 0 \). How?

3. a. Prove that the following set is a field: \(\mathbb{F}_2 = \mathbb{Z}/2\mathbb{Z} = \{0, 1\} \), with operations given by \(0 + 0 = 1 + 1 = 0, 0 + 1 = 1 + 0 = 1, 0 \cdot 0 = 0 \cdot 1 = 1 \cdot 0 = 0, 1 \cdot 1 = 1 \).
 b. A field is said to have characteristic \(p > 0 \) if \(p \) is the smallest positive integer such that \(p \cdot 1 = 0 \) (the sum of \(p \) 1’s equals zero). A field has characteristic 0 if \(p \cdot 1 \neq 0 \) for all \(p \in \mathbb{N} \). The field in the previous example has characteristic 2. Prove that if \(K \) is a field with characteristic \(p \), \(p \) must be prime.

4.* Let \(K \) be an ordered field, and let \(x, y \in K \). Prove the following
 a. \(x > 0 \) if and only if \(\frac{1}{x} > 0 \).
 b. Assume \(x, y > 0 \) or \(x, y < 0 \). Then \(x > y \) if and only if \(\frac{1}{x} < \frac{1}{y} \).

5.* Prove that 10 and 12 have no rational square roots.

6. Prove that for every \(x \in \mathbb{R} \) with \(x > 0 \), there exists an \(n \in \mathbb{N} \) such that \(\frac{1}{n} < x < n \).

7.* Let \(X \) be an ordered set with the least upper bound property. Fill in the outline to show that \(X \) has the greatest lower bound property (every nonempty bounded below subset has a greatest lower bound).
 Let \(S \subset X \) be a nonempty bounded below subset, and let \(L \) be the set of all lower bounds for \(S \). Then \(L \) is
 a. nonempty
 b. bounded above.
 Therefore \(L \) has a supremum in \(L \). This supremum is
 c. a lower bound for \(S \)
 d. greater than every other lower bound for \(S \).
 Hence \(\text{sup} L \) is the greatest lower bound for \(S \). Since \(S \) was an arbitrary nonempty bounded below subset, \(X \) has the greatest lower bound property.

8. Let \(X \) be an ordered set and \(S_1, S_2 \) two bounded nonempty subsets. Prove that
 a. \(\text{sup}(S_1 \cup S_2) = \max\{\text{sup} S_1, \text{sup} S_2\} \) and \(\text{inf}(S_1 \cup S_2) = \min\{\text{inf} S_1, \text{inf} S_2\} \)
 Can we make a similar statement about the supremum and infimum of \(S_1 \cap S_2 \)?
 b. If \(S_1 \subseteq S_2 \), \(\text{inf} S_2 \leq \text{inf} S_1 \leq \text{sup} S_1 \leq \text{sup} S_2 \).
Honors problems

1. Let $n, k \in \mathbb{N}$. If n does not have an integer k-th root, it doesn’t have a rational k-th root either. You may use the existence and uniqueness of prime factorizations.

2. Read section 1.8 in the text. Define $y_1 = \frac{1}{3}$, and given y_{n-1}, define $y_n = y_{n-1} + \frac{1}{3^n}$. Show that the sequence (y_n) is bounded, and mimic the argument in Example 1.32 (but give more details and fix the typo) to prove that the least upper bound of the sequence is transcendental.