1. Let X, Y be normed vector spaces. Prove that if the function $T : X \to Y$ is a bounded linear transformation, then its graph, $\Gamma(T) := \{(x, Tx) : x \in X\}$ is a closed linear subspace of $X \times Y$.

2. Let X and Y be Banach spaces and let $T \in \mathcal{L}(X, Y)$. Then there exists a constant $C > 0$ such that $\|Tx\| \geq C\|x\|$ for every $x \in X$ if and only if T is one-to-one and TX is a (topologically) closed (vector) subspace of Y.

3. Let X and Y be a Banach spaces, and let $\Omega(X, Y)$ be the space of all bounded linear operators from X to Y, whose inverses also exist and are bounded linear operators from Y to X. Prove that the inversion operator $\text{Inv} : \Omega(X, Y) \to \Omega(Y, X)$ is differentiable, and that $D \text{Inv}_A(h) = -A^{-1}hA^{-1}$, $h \in \mathcal{L}(X, Y)$.

Hint: For h sufficiently small, $(A + h)^{-1}$ may be computed using the von Neumann series:

$$
(A + h)^{-1} = \sum_{n=0}^{\infty} (-1)^n (A^{-1}h)^n A^{-1} = \sum_{n=0}^{\infty} (-1)^n A^{-1}(hA^{-1})^n.
$$

4. If $f : V \to \mathbb{R}$ is differentiable at $v \in V$ and f has a local maximum at v, then $Df_v = 0$.