Lecture 33 Wed Nov 28

We will do Ch 14 next, and return to Ch 9 time permitting

Ch 14 Polya counting

14.1 Permutations and symmetry groups

Let $X = \text{nonempty finite set}$

Say $X = \{1, 2, \ldots, n\}$

Consider perm of X:

a_1, a_2, \ldots, a_n

View this as a bijection

$X \rightarrow X$

$i \rightarrow a_i$
To emphasize this view we often write

\[
\begin{pmatrix}
 1 & 2 & \cdots & n \\
 a_1 & a_2 & \cdots & a_n
\end{pmatrix}
\]

the bijection sends each number in top row to the number beneath it.

Ex \quad n = 5

the permutation

\[
\begin{pmatrix}
 1 & 2 & 3 & 4 & 5 \\
 4 & 3 & 5 & 1 & 2
\end{pmatrix}
\]

satisfy

\[
\begin{pmatrix}
 1 & 1 \\
 2 & 2 \\
 3 & 3 \\
 4 & 4 \\
 5 & 5
\end{pmatrix}
\]
Def: For $n \geq 1$

$$S_n = \text{set of all perms of } \{1, 2, \ldots, n\}$$

Composition of permutations

Given perms $f : X \to X$, $g : X \to X$

their composition $f \circ g : X \to X$ satisfies

$$(f \circ g)(x) = f(g(x)) \quad \forall x \in X$$

"First apply g and then apply f"

\[
\begin{array}{ccc}
X & \xrightarrow{g} & X \\
\downarrow{f} & & \downarrow{f}
\end{array}
\]

$$(f \circ g)(x) = f(g(x))$$
Ex \(f \) \(\text{from pems} \)

\[f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 3 & 1 & 5 & 2 \end{pmatrix} \quad g = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 5 & 4 & 1 \end{pmatrix} \]

Find \(fog \)

Sol

\[\begin{array}{cccc}
1 & & & 1 \\
2 & 2 & 2 & \\
3 & 3 & & \\
4 & 4 & 4 & \\
5 & 5 & & \\
\end{array} \]

\[\Rightarrow \quad g \quad \Rightarrow \quad f\]

\[fog = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 1 & 2 & 5 & 4 \end{pmatrix} \]

\[(fog)(1) = f(g(1)) = f(2) = 3 \quad \text{etc.}\]
Ex. Referring to above fig. find gof

\[\text{Graph of } f \] \hspace{2cm} \text{Graph of } g \\
\]

\[\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 5 & 2 & 1 & 3 \end{pmatrix} \]

Note: $gof \neq fog$ in general.

We view composition \circ as a binary operation on S_n given f and g in S_n, their composition fog is an element of S_n.
LEM For \(f, g, h \in S_n \)

\[(f \circ g) \circ h = f \circ (g \circ h) \]

"Composition is associative"

pf Each side of \(\star \) is a function \(X \rightarrow X \)

where \(X = \{1, 2, \ldots, n\} \)

Show each function sends each \(x \in X \) to the same thing

\[(f \circ g) \circ h : x \rightarrow (h \circ g)(x) = (f \circ g)(h(x)) = f(g(h(x)))\]

\[f \circ (g \circ h) : x \rightarrow (g \circ h)(x) = g(h(x)) \rightarrow f(g(h(x)))\]

\[f^2 = f \circ f, \quad f^3 = f \circ f \circ f, \quad f' = f\]

From now on we drop parenthesis and write

\[f \circ g \circ h\]

We abbreviate

\[f^2 = f \circ f, \quad f^3 = f \circ f \circ f, \quad f' = f\]

etc
The identity permutation

\[I : X \rightarrow X \]

satisfies

\[I(x) = x \quad \forall x \in X \]

"I leaves everything alone"

So

\[I = \begin{pmatrix} 1 & 2 & \cdots & n \\ 1 & 2 & \cdots & n \end{pmatrix} \]
LEM \quad F_n \text{ a perm} \quad f : X \to X,

f \circ I = f

I \circ f = f

pf \quad \forall x \in X

(f \circ I)(x) = f \left(\frac{I(x)}{x} \right)

= f(x)

Also

(I \circ f)(x) = I \left(\frac{f(x)}{x} \right)

= f(x)

\square
Inverses

Given perm \(f: X \rightarrow X \)

Say \(f = (\begin{array}{c}
1 & 2 & 3 & 4 & 5 \\
4 & 3 & 1 & 5 & 2
\end{array}) \)

\[f^{-1} = \begin{array}{c}
1 & 2 & 3 & 4 & 5 \\
3 & 5 & 2 & 1 & 4
\end{array} \]

Call \(f^{-1} \) the inverse of \(f \)

\(f^{-1} \) undoes \(f \)
Given a perm $f: X \to X$

then f^{-1} is described as follows:

View I

For all $x, y \in X$

$f(x) = y$ if and only if $f^{-1}(y) = x$

View II

For all $x \in X$

$f^{-1}(f(x)) = x$

View III

For all $y \in X$

$f(f^{-1}(y)) = y$

$$f^{-1} \circ f = I$$

$$f \circ f^{-1} = I$$
LEMMA Given perm \(f: X \to X \nolimits \)

then for all perms \(g: X \to X \nolimits \)

the following are equivalent:

(i) \(\; g \circ f = I \)

(ii) \(\; f \circ g = I \)

(iii) \(\; g = f^{-1} \)

pf \((iii) \to (i) \quad \text{From View II alone} \)

\((iv) \to (i) \quad \text{From View III alone} \)

(i) \to (iii)

\[g \circ f = I \]

\[(g \circ f) \circ f^{-1} = I \circ f^{-1} \]

\[f^{-1} \]

\[g \circ (f \circ f^{-1}) \]

\[g \circ I \]

\((ii) \to (iii) \quad \text{Similar} \)
Ex. Given \(f : X \rightarrow X \), \(g : X \rightarrow X \)

Find \((f \circ g)^{-1}\)

Sol

\[f \circ g : X \rightarrow X \rightarrow X \]

\(f \circ g\) is undone by

\[(f \circ g)^{-1} : X \leftarrow X \leftarrow X \]

So

\[(f \circ g)^{-1} = g^{-1} \circ f^{-1}\]

check

\[(g^{-1} \circ f^{-1}) \circ (f \circ g) = I\]

\[g^{-1} \circ f^{-1} \circ g \circ f = I\]

\[g^{-1} \circ f = T\]
More generally, given permutations

\[f_0 : X \to X, \]
\[f_1 : X \to X, \]
\[\ldots \]
\[f_r : X \to X \]

\[(f_0 \circ f_1 \circ \cdots \circ f_r)^{-1} = f_r^{-1} \circ f_{r-1}^{-1} \circ \cdots \circ f_1^{-1} \circ f_0^{-1} \]

In particular, for any permutation \(f : X \to X \)

and \(r \geq 1 \)

\[(f^r)^{-1} = (f^{-r})^r \]

Call this commutator \(f^{-r} \)

Formally define

\[f^0 = I \]

By construction

\[f^r \circ f^s = f^{r+s} \quad \text{for all integers } r, s \]

\[(f^r)^s = f^{rs} \]
14.1 Cont.

\[X = \text{nonempty finite set} \]

Say
\[X = \{1, 2, \ldots, n\} \]

Given perm
\[f : X \to X \]

Consider
\[I, f, f^2, f^3, \ldots \]

Finitely many perms \(X \to X \)

Must be duplication among \(X \) s
\[f^r = f^s \quad r < s \]

So
\[f^{s-r} = I \]

So
\[\exists \ m \geq 1 \text{ such that} \]
\[f^m = I \]

Note
\[f^{-1} = f^{m-r} \]
f \circ f^{m-1} = f^m = I

DEF A permutation group on X is a set G of permutations $X \to X$ such that:

1. For all $f, g \in G$

 $f \circ g \in G$

2. $I \in G$

G is closed under composition.
LEM Given a permutation \(\sigma \) on a set \(X \).

Then for all \(f \in G \)

\[f^{-1} \in G \]

pf

Case \(f = I \): ok since \(I^{-1} = I \)

Case \(f \neq I \): \(\exists m \geq 1 \) such that \(f^m = I \)

\[f^{-1} = f^{m-1} \]

\[= \underbrace{f \circ f \circ \ldots \circ f}_{m-1} \]

\(\in G \) since \(G \) is closed under comp.
Examples of Permutation Groups

EX 1 Recall

\[S_n = \text{set of all perms of } X = \{1, 2, \ldots, n\} \]

\[S_n = \text{perm group on } X \]

This group is called the symmetric group of order \(n \).
Ex 2 Consider an oriented regular n-gon P in the plane.

Ex $n = 6$

View $X =$ set of corners (vertices) of P

$X = \{ 1, 2, 3, 4, 5, 6 \}$
P has rotational symmetries:

If we rotate P clockwise by some multiple of 60° ($0 \leq m \leq 5$),

then result coincides with P_0.

Each rotation induces perm of X:

<table>
<thead>
<tr>
<th>m</th>
<th>perm of X</th>
<th>name of perm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \ 1 & 2 & 3 & 4 & 5 & 6 \end{pmatrix}$</td>
<td>I</td>
</tr>
<tr>
<td>1</td>
<td>$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \ 2 & 3 & 4 & 5 & 6 & 1 \end{pmatrix}$</td>
<td>R</td>
</tr>
<tr>
<td>2</td>
<td>$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \ 3 & 4 & 5 & 6 & 1 & 2 \end{pmatrix}$</td>
<td>$R^2 = R_0 R$</td>
</tr>
<tr>
<td>3</td>
<td>$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \ 4 & 5 & 6 & 1 & 2 & 3 \end{pmatrix}$</td>
<td>R^3</td>
</tr>
<tr>
<td>4</td>
<td>$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \ 5 & 6 & 1 & 2 & 3 & 4 \end{pmatrix}$</td>
<td>R^4</td>
</tr>
<tr>
<td>5</td>
<td>$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \ 6 & 1 & 2 & 3 & 4 & 5 \end{pmatrix}$</td>
<td>R^5</td>
</tr>
</tbody>
</table>

Note $R^6 = I$.
Define

\[G = \text{net of all rotational symmetries of } P \]
\[= \{ I, R, R^2, R^3, R^4, R^5 \} \]

So \[|G| = 6 \]

Then \[G \] is a perm group \(\times \)

"cyclic group of order 6"

Inverse:

<table>
<thead>
<tr>
<th>(f)</th>
<th>(I)</th>
<th>(R)</th>
<th>(R^2)</th>
<th>(R^3)</th>
<th>(R^4)</th>
<th>(R^5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f^{-1})</td>
<td>(I)</td>
<td>(R^5)</td>
<td>(R^4)</td>
<td>(R^3)</td>
<td>(R^2)</td>
<td>(R)</td>
</tr>
</tbody>
</table>

In general, \(f_{n=2} \)

the cyclic group of order \(n \) = group of rotational symmetries of an oriented regular \(n \)-gon
Ex 3 Consider a non-oriented regular n-gon in the plane

\[n = 6 \]

View \(X = \text{set of vertices of } P \) as before

\[X = \{1, 2, 3, 4, 5, 6\} \]
P has rotational and reflective symmetries

Rotational symmetries: 6 of these form a regular hexagon

Reflective symmetries

If we reflect P across a line of reflective symmetry, the result coincides with P.

ex
P has 6 lines of reflective symmetry.

Each reflective symmetry of P induces perm of X.
<table>
<thead>
<tr>
<th>line of sym</th>
<th>perm of X</th>
<th>name</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{6}{1} \frac{5}{2} \frac{4}{3})</td>
<td>((1 \ 2 \ 3 \ 4 \ 5 \ 6)) ((1 \ 6 \ 5 \ 4 \ 3 \ 2))</td>
<td>(\gamma)</td>
</tr>
<tr>
<td>(\frac{6}{1} \frac{5}{2} \frac{4}{3})</td>
<td>((1 \ 2 \ 3 \ 4 \ 5 \ 6)) ((2 \ 1 \ 6 \ 5 \ 4 \ 3))</td>
<td>(R \circ \gamma)</td>
</tr>
<tr>
<td>(\frac{6}{1} \frac{5}{2} \frac{4}{3})</td>
<td>((1 \ 2 \ 3 \ 4 \ 5 \ 6)) ((3 \ 2 \ 1 \ 6 \ 5 \ 4))</td>
<td>(R^2 \circ \gamma)</td>
</tr>
<tr>
<td>(\frac{6}{1} \frac{5}{2} \frac{4}{3})</td>
<td>((1 \ 2 \ 3 \ 4 \ 5 \ 6)) ((4 \ 3 \ 2 \ 1 \ 6 \ 5))</td>
<td>(R^3 \circ \gamma)</td>
</tr>
<tr>
<td>(\frac{6}{1} \frac{5}{2} \frac{4}{3})</td>
<td>((1 \ 2 \ 3 \ 4 \ 5 \ 6)) ((5 \ 4 \ 3 \ 2 \ 1 \ 6))</td>
<td>(R^4 \circ \gamma)</td>
</tr>
<tr>
<td>(\frac{6}{1} \frac{5}{2} \frac{4}{3})</td>
<td>((1 \ 2 \ 3 \ 4 \ 5 \ 6)) ((6 \ 5 \ 4 \ 3 \ 2 \ 1))</td>
<td>(R^5 \circ \gamma)</td>
</tr>
</tbody>
</table>
Recall $R^6 = I$

For any reflection
\[
(\text{reflection})^2 = I
\]

so
\[
\text{each reflection is its own inverse}
\]

obs
\[
\gamma^2 = I
\]

For $0 \leq \gamma \leq 5$

\[
(R^{\delta} \gamma)^2 = I
\]

\[
R^{\delta} \gamma = (R^{\delta} \gamma)^{-1}
\]

\[
= R^{\delta} \gamma^{-1}
\]

\[
= \gamma R^{\delta - \gamma}
\]

\[
= \gamma R^{\delta - \gamma}
\]

let $G =$ set of all symmetries of P, both rotational and reflectonal

\[
G = \{ R^{\delta} \gamma \mid \delta \in \{0, 5\}, \gamma \in \{0, 1, 2, 3, 4, 5\} \}
\]

$|G| = 12$

then G is a perm group in X

"dihedral group of order 12"
In general for \(n \geq 3 \)

The **dihedral group of order** 2\(n \) = group of symmetries of the regular \(n \)-gon

Any geometric figure of any dimension has a symmetry group

Ex. The 5 platonic solids in 3 dimensions

- cube
- tetrahedron
- octahedron
- dodecahedron
- icosahedron

Cube

![Diagram of a cube]

\(X = \text{set of vertices} \quad |X| = 8 \)

Each symmetry of the cube induces perm of \(X \)

Let \(G = \text{set of resulting perms of } X \)

\(G = \text{perm group on } X \)
Claim \(|G| = 48 \)

Proof: Consider 3 vertices

![Diagram of a cube with vertices labeled a, b, c.]

To construct \(f \in G \) we define \(f(a), f(b), f(c) \) in stages.

<table>
<thead>
<tr>
<th>Stage</th>
<th>To Do</th>
<th>#Choices</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pick (f(a))</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>Pick (f(b)) from among the 3 vertices adjacent to (a)</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>Pick (f(c)) from among 2 vertices adjacent (f(b)) other than (f(a))</td>
<td>2</td>
</tr>
</tbody>
</table>

\[
\text{#poss} = 8 \times 3 \times 2 = 48
\]

\(\square \)
Let X = nonempty finite set

Say $X = \{1, 2, \ldots, n\}$

Let G = permutation group on X

Running example (REX): X is set of vertices for the regular 4-gm

```
 1 2
 4 3
```

$G =$ the group of symmetries

= dihedral group of order 8

Define

ρ: 90$^\circ$ clockwise rotation

τ: reflection about \Box

$G = \{\text{I, } \rho, \rho^2, \rho^3, \tau, \rho \tau, \rho^2 \tau, \rho^3 \tau\}$
Def: A *coloring* of X is an assignment of a color to each element of X (distinct elements of X might get the same color).

REX: Using colors Red (R) and Blue (B) there are $2^4 = 16$ possible colorings. They are:

<table>
<thead>
<tr>
<th>#B</th>
<th>desc</th>
<th>#colorings</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$R\ R\ R\ R$</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>$B\ R\ R\ R$ + cyclic perms</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>$B\ B\ R\ R$</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>$B\ R\ B\ B$</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>$B\ B\ B\ B$</td>
<td>4</td>
</tr>
</tbody>
</table>

Table 1
View each coloring above as a function

\[X \longrightarrow \{ \text{R, B}\} \]

\[i \longrightarrow \text{color assigned to } i \]

Given \(f \in G \)

Given a coloring \(c \) of \(X \)

Permute \(X \) to get another coloring of \(X \):

\[X \xrightarrow{c} \{ \text{R, B}\} \]

\[f \downarrow \]

\[X \]

\[X \quad \rightarrow \quad \{ \text{R, B}\} \]

\[f^{-1} \uparrow \]

\[X \]

Composition \(f \circ c \) is a coloring of \(X \)
Define
\[f \ast c = c \circ f^{-1} \]

Thus
\[f \ast c \text{ is a coloring of } X \]

that assigns each element \(x \in X \) the color \(c(f^{-1}(x)) \)

Note \(f \) induces a perm of the set of all colorings \(\mathcal{C}(X) \):

\[
\begin{align*}
\{ \text{coloring of } X \} & \rightarrow \{ \text{coloring of } X \} \\
c & \rightarrow f \ast c
\end{align*}
\]

LEM - For a coloring \(c \) of \(X \):
\[I \ast c = c \]

\[I = \text{identity map of } X \]

pf
\[
\begin{align*}
I \ast c &= c \circ I^{-1} \\
&= c \circ I \\
&= c
\end{align*}
\]
LEM Given $f, g \in G$,

Given a coloring c_X

Then

\[f^* (g^* c) = (f o g)^* c \]

pf

\[f^* (g^* c) = (g^* c) o f^* \]
\[= (c o g)^* o f^* \]
\[= c o (g^* o f^*) \]
\[= c o (f o g)^* \]
\[= (f o g)^* c \]

\[\square \]

LEM Given $f \in G$,

Given colorings c_1 and $c_2 \in X$ such that

\[c_2 = f^* c_1 \]

Then

\[c_1 = f^{-1}^* c_2 \]

pf

\[f^{-1}^* c_2 = f^{-1}^* (f^* c_1) \]
\[= (f^{-1} o f)^* c_1 \]
\[= I^* c_1 \]
\[= c_1 \]

\[\square \]
For the coloring \(c \):

\[
\begin{array}{c}
R & R \\
R & R \\
\end{array}
\]

\[f \ast c = c \quad \text{forall } f \in G \]

(ii) Find \(f \ast c \)

\[
\begin{array}{c}
B & R \\
R & R \\
\end{array}
\]

\[\rho = \left(\begin{array}{cccc}
1 & 2 & 3 & 4 \\
2 & 3 & 4 & 1 \\
\end{array} \right) \]

1 2
4 3

\[\rho \downarrow \uparrow \rho^{-1} \]

1 2
4 3

\[\rho \ast c : \]

\[
\begin{array}{c}
R & R \\
R & B \\
\end{array}
\]

"Apply \(\rho \) to picture *"
Find $r \ast c$

$$r = \begin{pmatrix} 1 & 2 \\ 4 & 3 \end{pmatrix}$$

1 2 \rightarrow \quad R \ast B

4 3

\[r \ast c \quad \text{applying } r \text{ to picture } c \]
We record a principle

Given a coloring c of X, say

\[\begin{array}{cc}
B & B \\
R & R \\
\end{array} \]

Then for all $f \in G$, the coloring $f \circ c$ is obtained by applying f to the picture.
Consider the set of colorings of X that have one B

G acts on this set as follows

![Diagram]

Key: For $f \in G$ and a coloring c of X,

$$f \rightarrow c^{f \cdot c}$$
Consider the set of colorings of X. Let's have two B's. G acts on this set as follows:

- r:
 - B becomes R and R becomes B.
 - B remains B.

- p:
 - R becomes B and B becomes R.
 - B remains B.

- t:
 - R becomes B and B becomes R.
 - B remains B.
Above diagram has 2 connected components.

Given colonies c_1, c_2 of X

call them G-equivalent and write $c_1 \sim c_2$

whereas they are in the same connected component of the diagram,

then

$$G
\begin{array}{c}
\sim
c_1 \sim c_2
\end{array}$$

means

there exists $f \in G$ such that

$$c_2 = f \circ c_1$$

The relation \sim is an equivalence relation and the equivalence classes are the connected components of the diagram.
Formal verification that G is an equivalence relation

0. For all colorings c of X show

$$G$$
$c \sim c$

Proof: $c = I \ast c$
$I = \text{identity of } G$

0. For all colorings c_1, c_2 of X such that G

$$G$$
$c_2 \sim c_1$

Proof: Since $c_1 \sim c_2$ for $f \in G$ s.t. $c_2 = f \ast c_1$

Now $c_1 = f^{-1} \ast c_2$ and $f^{-1} \in G$ so

$$G$$
$c_2 \sim c_1$

1. For all colorings c_1, c_2, c_3 of X such that

$$G$$
$c_1 \sim c_2$ and $c_2 \sim c_3$

Show $c_1 \sim c_3$
pf \ \exists f \in G \ st.
\quad c_2 = f \ast c_1

\forall g \in G \ s.t.
\quad c_3 = g \ast c_2

\therefore
\quad c_3 = g \ast c_2
\quad = g \ast (f \ast c_1)
\quad = (g \circ f) \ast c_1
\quad \underbrace{\text{in}}_{G}
\quad G

\therefore
\quad c_1 \sim c_3
\quad \blacksquare
Consider the set of the coloring of \(X \) using colors \(R, B \).

The relation \(\mathcal{E} \) on this set has 6 equivalence classes, one for each row of Table 1.

So up to \(G \)-equivalence, there are 6 colorings of \(X \) with \(R, B \).
14.2 Burnside's Theorem

Let

\[X = \text{nonempty finite set} \]
\[X = \{1, 2, \ldots, n\} \]

\[G = \text{a permutation group on } X \]

Pick some colors and consider the set of all colorings of \(X \) with those colors.

We saw that \(G \) induces a perm gp on that set.

Let \(C \) be a nonempty subset of the above set of colorings of \(X \).

Call \(C \) \underline{G-closed} whenever

\[f(x) \in C \text{ for all } f \in G \text{ and } c \in C \]

In this case \(G \) induces perm gp on \(C \).

REX For each row in table I, the given set of colorings is \(G \)-closed.
From now on assume C is G-closed.

Recall that for colorings $c_1, c_2 \in C$

$c_1 \sim c_2$ means "G-equivalent"

If $f \in G$ s.t. $f \circ c = c_2$

\sim is an equivalence on C

$C = \text{disjoint union of } \sim$ equivalence classes

Define

$N(c, C) = \# \text{ equivalence classes of } \sim \text{ on } C$

$= \# \text{ of mutually } G\text{-inequivalent colors in } C$

REX If we take

$C = \text{all } 16 \text{ colorings } t \times$

then $N(c, C) = 6$

Since there is 1 \sim equiv. class for each of the 6 rows of table I.

next goal: find formula for $N(c, C)$
For \(c \in C \) and \(f \in G \), we say

\[
\text{f stabilizes } c
\]

or

\[
\text{f fixes } c
\]

where

\[
f \ast c = c
\]

For \(c \in C \) define

\[
G(c) = \{ f \in G / f \ast c = c \}
\]

"The stabilizer of \(c \) in \(G \)"
LEM Given \(c \in C \), then

\[G(c) \] is a permutation on \(C \)

pf Given \(f, g \in G(c) \), show \(fog \in G(c) \):

We have \(f \circ c = c \), \(g \circ c = c \)

\[(f \circ g) \circ c = f \circ (g \circ c) \]
\[= f \circ c \]
\[= c \]

Show \(I \in G(c) \):

\[I \circ c = c \]

\[\square \]
LEM. Given \(c \in C \).

Then for all \(f, g \in \mathcal{F} \), the following are equivalent:

(i) \(f \ast c = g \ast c \)

(ii) \(f \circ g \in G(c) \)

\[\Rightarrow \]

\[f^{-1} \ast (f \ast c) = f^{-1} \ast (g \ast c) \]

\[\Rightarrow \]

\[(f \circ g) \ast c = f^{-1} \circ g \ast c \]

\[\Rightarrow \]

\[f^{-1} \circ g \in G(c) \]
Given \(c \in C \)

Consider the equivalence class \(\sim \) containing \(c \)

This is

\[\{ f \cdot c / f \in G \} \]

Then

For \(c \in C \)

\[| \{ f \cdot c / f \in G \} | = \frac{|G|}{|G(c)|} \]

pf

Abb \(y = \{ f \cdot c / f \in G \} \)

For \(y \in Y \) define

\[G^{(y)} = \{ f \in G / f \cdot c = y \} \]

\[\exists G^{(y)} \exists y \in Y \quad \text{par \, hint: } G \]

So

\[|G| = \sum_{y \in Y} |G^{(y)}| \]

For \(y \in Y \) show

\[|G^{(y)}| = |G(c)| \]
For $f \in G^{(y)}$, the map

$$G(c) \rightarrow G^{(y)}$$

$h \rightarrow foh$

is a bijection (by prev LEM)

So

$$|G(c)| = |G^{(y)}|$$

Now

$$|G| = \sum_{y \in Y} |G^{(y)}|$$

and

$$|G(c)|$$

$$= |Y| |G(c)|$$

So

$$|Y| = \frac{|G|}{|G(c)|}$$
For \(f \in G \) define

\[
C(f) = \{ c \in C \mid f \ast c = c \}
\]

"set of colorings in \(C \) that are fixed by \(f \)"

So for \(f \in G \) and \(c \in C \)

\[
c \in C(f) \iff f \ast c = c \iff f \in G(c)
\]

Thm. (Burnside)

\[
N = \frac{\sum_{f \in G} |C(f)|}{|G|}
\]

\# of equivalence classes

pf

Let

\[
S = \text{set of ordered pairs } (f,c) \text{ such that } f \in G \text{ and } c \in C \text{ and } f \ast c = c
\]

We compute \(|S|\) in two ways

I \[
|S| = \sum_{f \in G} |C(f)|
\]

II \[
|S| = \sum_{c \in C} |G(c)|
\]
Let C_1, C_2, \ldots, C_n denote the equivalence classes of \sim on C.

\[
|S| = \sum_{c \in C} |G(c)|
\]

\[
= \sum_{i=1}^{n} \sum_{c \in C_i} |G(c)| \quad \text{by previous}
\]

\[
= \sum_{i=1}^{n} |C_i| \cdot \frac{|G|}{|C_i|}
\]

\[
= \sum_{i=1}^{n} |G| = |G|
\]

So

\[
N = \frac{|S|}{|G|}
\]

\[
= \sum_{f \in G} \frac{|C(f)|}{|G|}
\]

\[
\square
\]
\[C = \text{set of all 16 colorings of } X \text{ using colors } R, B \]

\[G = \text{dihedral gp of order 8} \]

We saw \(N(G, c) = 6 \)

Let us verify this using Burnside.

By Burnside

\[N(G, c) = \frac{\sum_{g \in G} |C(g)|}{|G|} \]

\[|G| = 8 \]

\[G = \{ 1, \rho, \rho^2, \rho^3, \tau, \rho \tau, \rho^2 \tau, \rho^3 \tau \} \]

For all \(g \in G \) find \(|C(g)|\)
| \(f \in G \) | \(C(f) \) | \(\text{desc} \) | \(|C(f)| \) |
|---|---|---|---|
| 1 | 1 | \(a \) | 2 \(^4 = 16 \) |
| 1 | 1 \(\rho \) | \(a \) \(\rho \) | 2 \(^2 = 4 \) |
| 1 | 1 \(\rho ^2 \) | \(a \) \(\rho ^2 \) | 2 \(^2 = 4 \) |
| 1 | 1 \(\rho ^3 \) | \(a \) \(\rho ^3 \) | 2 \(^2 = 4 \) |
| 1 | 1 \(\rho \tau \) | \(a \) \(\rho \tau \) | 2 \(^3 = 8 \) |
| 1 | 1 \(\rho ^2 \tau \) | \(a \) \(\rho ^2 \tau \) | 2 \(^3 = 8 \) |
| 1 | 1 \(\rho ^3 \tau \) | \(a \) \(\rho ^3 \tau \) | 2 \(^3 = 8 \) |

\[N(G, C) = \frac{48}{8} = 6 \]
Ex

\[X, G \text{ as above} \]

Given integer \(p \geq 1 \)

Given \(p \) distinct colors

Let \(C = \text{set of colorings of } X \) with these colors.

So \[|C| = p^4 \]

Find \[N(G, C) \]

Sol

prev ex n case \(p = 2 \)

In prev ex replace \(2 \) by \(p \)

| \(f \) | \(|C(f)| \) |
|------|--------|
| 1 | 1^4 |
| \(p \) | \(p \) |
| \(p^2 \) | \(p^2 \) |
| \(p^3 \) | \(p^3 \) |
| \(p^4 \) | \(p^4 \) |
| \(p^5 \) | \(p^5 \) |
| \(p^6 \) | \(p^6 \) |

\[
N(G, C) = \frac{p^4 + 2p^3 + 3p^2 + 2p}{8}
\]

<table>
<thead>
<tr>
<th>(p)</th>
<th>(N(G, C))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>21</td>
</tr>
<tr>
<td>4</td>
<td>55</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Recall Burnside

Given:

- X a nonempty finite set
- G a permutation group on X
- C a nonempty set of colors of X

Then

$$
N(g, c) = \prod_{\pi \in G} \frac{|C(\pi)|}{|G|}
$$

$\#$ \mathcal{E}-equivalence classes in C
Ex Consider multiset

\[S = \{ a, b, c, d \} \]

Fix integer \(n \geq 1 \).

Recall \# n-perms of \(S \) is \(4^n \).

How many n-perms of \(S \) if we declare each
\[a, a_1, a_2, \ldots, a_n \]
and its mirror image \(a_n, a_{n-1}, \ldots, a_1 \)
to be equivalent?

[so \(\text{perm } abcd \) equiv dacbba]

So define

\[X = \{1, 2, \ldots, n\} \]

View \(a, b, c, d \) as colors

\[C = \text{set of all colorings of } X \text{ with } a, b, c, d \]

\[|C| = 4^n \]

Define

\[G = \{ I, \pi \} \]

\[\pi = \begin{pmatrix} 1 & 2 & \cdots & n \\ n & n-1 & \cdots & 1 \end{pmatrix} \]

\[\pi^2 = I, \quad G \text{ is a perm grp on } X \]
We seek \(N(G,C) \)

| \(f \in G \) | \(C(f) \) | \(|C(f)| \) |
|-----------|--------|--------|
| \(I \) | | |
| \(T \) | | |

Case \(n = 2r \) is even

\[a_1, a_2 \ldots \ a_r \mid a_r \ldots a_2, a_1, \ a_i, \ldots, a_r \in \{a, b, c, d\} \]

\(|C(f)| = 4^r \)

Case \(n = 2m + 1 \) is odd

\[a_1, a_2 \ldots \ a_r \mid a_r \ldots a_2, a_1, \ a_{2n}, \ldots, a_1 \in \{a, b, c, d\} \]

\(|C(f)| = 4^{m+1} \)

\(N(G,C) = \begin{cases}
\frac{4^n + 4 \sqrt{2}}{2} & \text{if } n \text{ even} \\
\frac{4^n + 4 \frac{\alpha^n}{2}}{2} & \text{if } n \text{ odd}
\end{cases} \)

\(= \frac{4^n + 4 \frac{\alpha^n}{2}}{2} \)
Ex. Tetrahedron

"in 3 dimensions"

"top view"

\[X = \text{net of vertices} \]

Label \(X \)

The group \(G \) of symmetries of the tetrahedron
<table>
<thead>
<tr>
<th>Types of symmetries on G</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>120° clockwise rot</td>
<td>4</td>
</tr>
<tr>
<td>120° c.c. rot</td>
<td>4</td>
</tr>
<tr>
<td>180° rot</td>
<td>3</td>
</tr>
<tr>
<td>identity I</td>
<td>1</td>
</tr>
</tbody>
</table>

We allow only "physically possible" symmetries

$|G| = 12$

G is often called the alternating group A_4
For the above tetrahedron

Let

\[C = \text{set of colorings of } \Gamma \text{ with colors } R, B \]

So \(|C| = 2^4 = 16 \)

Find \(N(e, C) \)

Solution 1: describe each equivalence class

<table>
<thead>
<tr>
<th># (\theta)</th>
<th>desc</th>
<th># colorings</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>
Each row gives a \sim equivalent

$N(\theta_c) = \#rows = 5$

Sol 2: Use Burnside

| $f \in G$ | $C(f)$ desc | $|C(f)|$ |
|--------------------|-------------|---------|
| 120° clockwise rot | $\{a, b\} \subseteq R, R$ | $2^2 = 4$ |
| 120° cc. rot | \ldots | \ldots |
| 180° rot | $\{a, b\} \subseteq R, R$ | $2^2 = 4$ |
| I | C | $2^4 = 16$ |

$N(\theta_c) = \frac{\sum_{f \in G} |C(f)|}{|G|}$

$= \frac{4 \times 4 + 4 \times 4 + 3 \times 4 + 1 \times 16}{12}$

$= \frac{60}{12}$

$= 5$
Ex. For the above k-configuration

Let
\[C = \text{set of colorings of } X \text{ with } R, W, B \]

So
\[|C| = 3^4 = 81 \]

Find \(N(G, C) \)

Sol 1. Describe each \(G \) equiv class

For a coloring \(c \in C \), define
\[r = \text{# vertices colored } R \]
\[w = \text{# vertices colored } W \]
\[b = \text{# vertices colored } B \]

For \(c \in C \), \(c \) is determined by \(r, w, b \).

obs
\[r + w + b = 4 \]
\[r \geq 0, \ w \geq 0, \ b \geq 0 \]

\#sols for \(r, w, b \) is
\[
\binom{4 + 3 - 1}{3 - 1} = \binom{6}{2} = 15
\]

\[N(G, C) = 15 \]
Solv 2 Use Burnside

<table>
<thead>
<tr>
<th>f ∈ G</th>
<th>C(f) desc</th>
<th></th>
<th>[c(C(f))]</th>
</tr>
</thead>
<tbody>
<tr>
<td>120° cc. rot</td>
<td>b</td>
<td></td>
<td>3 = 9</td>
</tr>
<tr>
<td>120° cc. rot</td>
<td>a, b ∈ {R, w, b}</td>
<td></td>
<td>3² = 9</td>
</tr>
<tr>
<td>180° rot</td>
<td>a, b ∈ {R, w, b}</td>
<td></td>
<td>3² = 9</td>
</tr>
</tbody>
</table>

\[N(\phi, \gamma) = \frac{\sum_{f \in G} |C(f)|}{|G|}\]

= \[\frac{4 \times 3^2 + 4 \times 3^2 + 3 \times 3^2 + 1 \times 3^4}{12}\]

= 15
Ex. For above tetrahedron

Given vertex \(p \)

Given \(p \) dist colors

Let \(C = \text{set of colorings of } X \text{ with these colors} \)

So \(|C| = p^4 \)

Find \(N(G, C) \)

Use Sol 12: By Burnside

\[
N(G, C) = \frac{\sum_{g \in G} |C(g)|}{|G|}
\]

\[
= \frac{4 \times p^2 + 4 \times p^2 + 3 \times p^2 + 1 \times p^4}{12}
\]

\[
= \frac{p^2(p^2 + 11)}{12}
\]

Sol 1 gets complicated
Ex. For the chromatic

Now take \(G = S_4 \) = set of all perms of \(X \)

\(|G| = 4! = 24 \)

Given \(p \geq 1 \), given \(p \) dist colors \(c_1, c_2, \ldots, c_p \)

\(C = \) set of colorings of \(X \) with \(p \) colors

Find \(N(G, C) \)

Sol 1. Desc each equiv class for \(\sim \)

For a coloring \(c \in C \)

For 1st of let

\(n^c_i = \) # vertices colored \(c_i \)

\(C \) is def'd up to \(\sim \) by the sequence

\(n_1, n_2, \ldots, n_p \)

Obs

\(n_1 + n_2 + \ldots + n_p = 4 \)

\(n_i \geq 0 \) \hspace{1cm} 1 \leq i \leq p \)

such are

\[
\binom{4 + p - 1}{p - 1} = \binom{p + 3}{4}
\]

\(N(G, C) = \binom{p + 3}{4} \)
So | 2
Use Burnside

describe the elements of G,

\[e \Rightarrow f = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix} \]

\[f = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 2 & 1 & 3 \end{pmatrix} \]

\[1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \]

\[1 \rightarrow 4 \rightarrow 3 \]

\[\vartriangle \]

\[\begin{array}{c|c}
\text{cycle type} & \#	ext{do of } G \\
\hline
\begin{array}{c}
\quad \quad \\
\quad \quad \\
\end{array} & 3^1 = 3 \\
\begin{array}{c}
\Delta \\
\quad \quad \\
\end{array} & 4 \times 2 = 8 \\
\begin{array}{c}
\quad \quad \\
\quad \quad \\
\end{array} & 3 \\
\begin{array}{c}
\quad \quad \\
\quad \quad \\
\end{array} & (\frac{3}{2}) = 6 \\
\begin{array}{c}
\quad \quad \\
\quad \quad \\
\end{array} & 1 \\
\hline
\end{array} \]
| $\rho \in G$ | $C(\rho)$ desc | $|C(\rho)|$ |
|---|---|---|
| ![Square](image) | $a \ a \ \ a \ \ a$ | ρ |
| ![Triangle](image) | $a \ a \ b \ b$ | ρ^2 |
| ![Hexagon](image) | $a \ a \ b \ c \ d \ e$ | ρ^4 |

$$N(\rho, c) = \frac{\sum_{\rho \in G} |C(\rho)|}{|G|}$$

$$= \frac{6\rho + 8\rho^2 + 3\rho^2 + 6\rho^3 + \rho^4}{24}$$

$$= \frac{6\rho + 11\rho^2 + 6\rho^3 + \rho^4}{24}$$

$$= \frac{(\rho + 3)(\rho + 2)(\rho + 1)\rho}{24}$$

$$= \binom{\rho + 3}{4}$$
Note

\[\frac{\rho^2 (\rho^2 + 1)}{12} = \binom{\rho + 3}{\omega} \]

for \(\rho = 1, 2, 3 \) but not in general
Given X a nonempty finite set
say $X = \{1, 2, \ldots, n\}$

Given integer $r \ (1 \leq r \leq n)$

Given mutually distinct a_1, a_2, \ldots, a_r in X

let

\[
[a_1, a_2, \ldots, a_r]
\]

"cycle notation"

denote the perm of X that sends

$a_1 \rightarrow a_2 \rightarrow a_3 \rightarrow \cdots \rightarrow a_r$

and fixes all other elements of X

Call the perm a cycle of order r

a

r-cycle
Exercise: $n = 8$

Let $f = [1 \ 3 \ 2 \ 6]$

Write f in 2-line notation.

Solution:

$$f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 6 & 2 & 4 & 5 & 1 & 7 & 8 \end{pmatrix}$$

Note: Each cycle has multiple cycle notations.

For instance:

$$[1 \ 3 \ 2 \ 6] = [3 \ 2 \ 6 \ 1] = [2 \ 6 \ 1 \ 3] = [6 \ 1 \ 3 \ 2]$$

Note: Cycle of order 1 is just the identity:

$$[6] = I$$

In 12i^2n
Given two cycles:

\[f = [a_1, a_2, \ldots, a_r] \quad g = [b_1, b_2, \ldots, b_s] \]

Call these cycles **disjoint** whenever

\[a_i \neq b_j \]

In this case, \(f \) and \(g \) commute:

\[fog = gof \]

pf: obs

- \(f \) fixes each \(b_1, b_2, \ldots, b_s \)
- \(g \) fixes each \(a_1, a_2, \ldots, a_r \)

For \(x \in X \) show

\[(fog)(x) = (gof)(x) \]

Case \(x \in \{ a_1, a_2, \ldots, a_r \} \)

- say \(x = a_i \)

\[fog : a_i \rightarrow a_i, \quad \quad g \rightarrow a_i, \quad \quad f \rightarrow a_i \]

\[gof : a_i \rightarrow a_i, \quad \quad f \rightarrow a_i, \quad \quad g \rightarrow a_i \]
Case $x \in \{ b_1, b_2, \ldots, b_n \}$

Say $x = b_2$

$fog: b_1 \rightarrow b_{2n} \rightarrow b_2 \leftarrow f \rightarrow g$

$gof: b_1 \rightarrow b_2 \rightarrow b_{2n}$

Case $x \notin \{ a_1, a_2 \}$ $x \notin \{ b_1, b_2, \ldots, b_n \}$

$fog: x \rightarrow x \rightarrow x$

$gof: x \rightarrow x \rightarrow x$

Example. Given any perm $f \notin X$

Say $n = 8$

$f = (\begin{array}{ccccccc}
1 & 2 & 4 & 5 & 6 & 7 & 8 \\
4 & 5 & 3 & 6 & 8 & 7 & 1 & 2
\end{array})$

Express f as a product of disjoint cycles \uparrow

with respect to composition
\[
f: \quad 1 \rightarrow 4 \rightarrow 6 \rightarrow 7 \quad 2 \rightarrow 5 \rightarrow 8 \quad 3 \rightarrow 3
\]

\[f = \begin{bmatrix} 1 & 4 & 6 & 7 \end{bmatrix} \circ \begin{bmatrix} 2 & 5 & 8 \end{bmatrix} \circ \begin{bmatrix} 3 \end{bmatrix}\]

"cycle factorization of \(f\)"

In general, each permutation of \(X\) is a product of disjoint cycles.

LEM: Each permutation of \(X\) is a product of disjoint cycles.
Ex. Consider regular 5-gon

\[X = \{1, 2, 3, 4, 5\} \]

Let \(G = \text{group of symmetries} \)

\[= \text{dihedral group of order 10} \]

\[G = \{ \rho, \tau \} \]

where

\(\rho \) is clockwise 72° rot.

\(\tau \) is reflection

For each \(f \in G \) find the cycle factorization

\[\rho \]

\[\tau \]
<table>
<thead>
<tr>
<th>f</th>
<th>cycle factorization</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>$[1][2][3][4][5]$</td>
</tr>
<tr>
<td>ρ</td>
<td>$[12345]$</td>
</tr>
<tr>
<td>ρ^2</td>
<td>$[13524]$</td>
</tr>
<tr>
<td>ρ^3</td>
<td>$[14253]$</td>
</tr>
<tr>
<td>ρ^4</td>
<td>$[15432]$</td>
</tr>
<tr>
<td>τ</td>
<td>![Diagram of τ]</td>
</tr>
<tr>
<td>------</td>
<td>----------------</td>
</tr>
<tr>
<td>$\rho \tau$</td>
<td>![Diagram of $\rho \tau$]</td>
</tr>
<tr>
<td>$\rho^2 \tau$</td>
<td>![Diagram of $\rho^2 \tau$]</td>
</tr>
<tr>
<td>$\rho^3 \tau$</td>
<td>![Diagram of $\rho^3 \tau$]</td>
</tr>
<tr>
<td>$\rho^4 \tau$</td>
<td>![Diagram of $\rho^4 \tau$]</td>
</tr>
</tbody>
</table>
Given \(X = \{1, 2, \ldots, n\} \)

Given \(\text{perm } f \in X \)

Consider cycle factorization of \(f \)

Define \(\#(f) = \text{the number of cycles in this factorization} \)

Ex: For above 5-gon

<table>
<thead>
<tr>
<th>(f)</th>
<th>(#(f))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>5</td>
</tr>
<tr>
<td>(\rho)</td>
<td>1</td>
</tr>
<tr>
<td>(\rho^2)</td>
<td>1</td>
</tr>
<tr>
<td>(\rho^3)</td>
<td>1</td>
</tr>
<tr>
<td>(\rho^4)</td>
<td>1</td>
</tr>
<tr>
<td>(\tau)</td>
<td>3</td>
</tr>
<tr>
<td>(\rho \tau)</td>
<td>3</td>
</tr>
<tr>
<td>(\rho^2 \tau)</td>
<td>3</td>
</tr>
<tr>
<td>(\rho^3 \tau)</td>
<td>3</td>
</tr>
<tr>
<td>(\rho^4 \tau)</td>
<td>3</td>
</tr>
</tbody>
</table>
Given \(X = \{1, 2, \ldots, n\} \)

Given integer \(p \geq 1 \)

Given \(p \) distinct colors \(c_1, c_2, \ldots, c_p \)

Let \(C = \) set of all colorings of \(X \) with these colors

Given a permutation \(f \) of \(X \)

Find \(|C(f)| \) in terms of \(#(f) \)

\(\text{pts in } X \text{ fixed by } f \)

So \(n \times n \)

\(f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 8 & 1 & 5 & 7 & 3 & 6 & 4 & 2 \end{pmatrix} \)

Find cycle factorization of \(f \)

\[f = \begin{bmatrix} 1 & 2 \\ 2 & 8 \end{bmatrix} \circ \begin{bmatrix} 3 & 5 \\ 5 & 3 \end{bmatrix} \circ \begin{bmatrix} 4 & 7 \\ 7 & 4 \end{bmatrix} \circ \begin{bmatrix} 6 & 2 \\ 2 & 6 \end{bmatrix} \]

\(#(f) = 9 \)
Describe $\hat{C}(f)$

\[
\begin{array}{c}
\begin{array}{c}
 a \\
 a \\
 a \\
\end{array}
\end{array}
\begin{array}{cccc}
 b & b & c & c \\
& & & d
\end{array}
\]

$a, b, c, d \in \{c_1, c_2, \ldots, c_r\}$

\[
\# \text{ choices for } a, b, c, d \text{ is } p^4 = p^{\#(f)}
\]

So

\[
\left| C(f) \right| = p^{\#(f)}
\]

Cor. Let X, C as above

Given G a perm of X then

\[
N(G, C) = \frac{\sum_{\text{fixed } p} p^{\#(f)}}{|G|}
\]
Given \(X = \{1, 2, \ldots, n\} \)

Given a perm \(f \) of \(X \)

We now associate with \(f \) a polynomial in \(n \) variables

\[z_1, z_2, \ldots, z_n \]

Consider cycle factorization of \(f \)

For \(k \) taken let

\[e_k = \# \text{ \(k \)-cycles in this factorization} \]

So

\[\sum_{k=1}^{n} e_k = n \]

Note

\[\sum_{k=1}^{n} e_k = \# \text{ total cycles in this factorization} = \#(f) \]

Define

\[mm(f) = z_1^{e_1} z_2^{e_2} \cdots z_n^{e_n} \quad \text{"the monomial of \(f \)}" \]

ex

\(n = 8 \)

\[f = \begin{pmatrix} 1 & 3 & 4 & 5 & 6 & 7 & 8 \\ 8 & 1 & 5 & 7 & 3 & 6 & 4 \end{pmatrix} \]

\[f = [182] \circ [35] \circ [47] \circ [6] \]

\[e_k \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \]

\[e_k \quad 1 \quad 2 \quad 1 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \]

\[mm(f) = z_1^2 z_2 z_3 \]
Def Given $X = \{1, 2, \ldots, n\}$

Given $G = \text{perm group on } X$

Define a polynomial P_G in n variables

z_1, z_2, \ldots, z_n

by

$$P_G(z_1, z_2, \ldots, z_n) = \frac{\sum_{f \in G} \text{mult}(f)}{|G|}$$

Thm Given $X = \{1, 2, \ldots, n\}$

Given $p \geq 1$

Given q distinct colors c_1, c_2, \ldots, c_p

let $C = \text{set of all colorings of } X \text{ with these colors}$

let $G = \text{perm group on } X$

Then

$$N(G, C) = P_G(r, r, \ldots, r)$$
Recall

\[N(c, c) = \frac{\sum_{f \in G} p^{\#(f)}}{|G|} \]

By def

\[p_G(z_1, z_2, \ldots, z_n) = \frac{\sum_{f \in G} mm(f)}{|G|} \]

For \(f \in G \) write

\[mm(f) = z_1^{e_1} z_2^{e_2} \cdots z_n^{e_n} \]

setting \(z_i = p^{f(i)} \), then become

\[p^{e_1} p^{e_2} \cdots p^{e_n} \]

\[= p^{e_1 + e_2 + \cdots + e_n} \]

\[= p^{\#(f)} \]

So

\[p_G(p, p, \ldots, p) = \frac{\sum_{f \in G} p^{\#(f)}}{|G|} \]

\[= N(c, c) \]

\[\square \]
Recall

Fix $X = \{1, 2, \ldots, n\}$, $n \geq 1$

$p \geq 1$

Fix colors c_1, c_2, \ldots, c_p

$C = \text{set of all colorings of } X \text{ with these colors}$

Fix $G = \text{perm}_p$ on X

Then

$N(G, C) = \frac{\sum_{f \in G} |C(f)|}{|G|}$

Burnside

$= P_G(p, p, \ldots, p)$

where

$P_G(z_1, z_2, \ldots, z_n) = \frac{\sum_{f \in G} \text{mon}(f)}{|G|}$

$\text{mon}(f) = \prod_{k=1}^{n} z_{e_1} \cdot e_2 \cdot \cdots \cdot e_n$

$e_k = \# \text{k-cycles in cycle factorization of } f$

Function P_G called cycle index of G.
Given $c \in C$

For $1 \leq i \leq p$ define

$$n_i = \# \text{vertices in } X \text{ colored } c_i \text{ by } c$$

So

$$n_1 + n_2 + \cdots + n_p = n = |X|$$

$$n_i \geq 0 \quad i = 1, 2, \ldots, p$$

Given a set $E \subseteq E_G$ define

$$C_{n_1, n_2, \ldots, n_p} = \text{ set of colorings of } X \text{ that have exactly}$$

$$n_i \text{ vertices colored } c_i \text{ for } i = 1, 2, \ldots, p$$

Note that $C_{n_1, n_2, \ldots, n_p}$ is G-invariant.

Problem

Find

$$N(G, C_{n_1, n_2, \ldots, n_p})$$

**
Sol: We give the generating function for \mathfrak{X}.

Introduce variables

$$u_1, u_2, \ldots, u_p$$

$$u_i$$ correspond to color c_i for $i \in \mathbb{Z}/p\mathbb{Z}$

Gen function f is

$$\sum_{n_1, n_2, \ldots, n_p} \mathbb{N}(G, c_1, n_1, \ldots, c_p) \quad u_1^{n_1} u_2^{n_2} \ldots u_p^{n_p}$$

where sum is over all color $n_1, n_2, \ldots, n_p \to \ast$
Theorem (Polya Counting Formula)

With above notation

\[\mathcal{A} = P_G \left(u_1 + u_2 + \ldots + u_r, \; u_1^2 + u_2^2 + \ldots + u_r^2, \; \ldots, \; u_1^n + u_2^n + \ldots + u_r^n \right) \]

where \(P_G \) = cycle index of \(G \)

pf \((h_{1,2})\)

2 colors \(c_1, c_2 \)

Show

\[\sum_{n_1 \geq 0, \; n_2 \geq 0, \; n_1 + n_2 = n} N \left(G; c_1^{n_1}, c_2^{n_2} \right) u_1^{n_1} u_2^{n_2} = P_G \left(u_1 + u_2, \; u_1^2 + u_2^2, \; \ldots, \; u_1^n + u_2^n \right) \]
Consider

\[P_G (u_1 + u_2, u_1 + u_2^2, \ldots, u_1 + u_2^n) \]

as a poly in \(u_1, u_2 \).

For \(n \geq 0 \) and \(n \geq 20 \)

\[
\text{coeff of } u_1^n u_2^n
\]

\[
= \frac{1}{n}
\]

Assume \(n_1 + n_2 = n \), else \(\lambda = 0 \) by constr.

Show

\[\lambda = N \left(G_1, C_{n_1, n_2} \right) \]

By Burnside

\[N \left(G, C_{n_1, n_2} \right) = \frac{\sum f \mid C_{n_1, n_2} (f)}{|G|} \]

Recall

\[P_G (z_1, z_2, \ldots, z_n) = \frac{\sum_{f \in G} \text{mm}(f)}{|G|} \]

For \(f \in G \) show

\[\text{coeff of } \text{mm}(f) \text{ to } \lambda = \left| \frac{C_{n_1, n_2}(f)}{|G|} \right| \]
\[m \circ f = e_1 e_2 \cdots e_n \]

\[e_k = \# \text{k-cycles in cycle factorization of } f \]

Replace

\[e_1 \rightarrow u_1 + u_2 \]
\[e_2 \rightarrow u_2^2 + u_2^3 \]
\[\vdots \]
\[e_n \rightarrow u_n^2 + u_n^n \]

\[\text{mult}(f) \text{ becomes} \]

\[(u_1 + u_2)^{e_1} (u_2^2 + u_2^3)^{e_2} \cdots (u_n^2 + u_n^n)^{e_n} \]

In this polynomial show

\[\text{coef of } u_1^{n_1} u_2^{n_2} = |C_{n_1, n_2}(f)| \]
\[
\left(\sum_{l_1=0}^{e_1} \left(l_1 \right) u_{l_1} e_{l_1} \right) \left(\sum_{l_2=0}^{e_2} \left(l_2 \right) u_{l_2} e_{l_2} \right) \ldots \left(\sum_{l_n=0}^{e_n} \left(l_n \right) u_{l_n} e_{l_n} \right)
\]

In the above polynomial the exph of \(u_{l_1} u_{l_2} \ldots u_{l_n} \) is

\[
\sum_{l_1, l_2, \ldots, l_n \geq 0} \left(\frac{e_1}{l_1} \right) \left(\frac{e_2}{l_2} \right) \ldots \left(\frac{e_n}{l_n} \right)
\]

\(l_1 + 2l_2 + \ldots + nl_n = \pi_1 \)

\[\text{show me equal } |C_{n_1 n_2}(t)| \]
Find $|C_{n_1,n_2}(4)|$

cycle factorization of f:

e_i $\{ \ldots \}$ 1-cycles

e_2 $\{ \ldots \}$ 2-cycles

e_3 $\{ \Delta \Delta \Delta \}$ 3-cycles

\vdots

To find $|C_{n_1,n_2}(4)|$ we construct a coloring $c \in C_{n_1,n_2}(f)$ in two steps.
Step I

decide how many

1-cycles get colored \(c_1 \) (\(e_1 \))

2-cycles \(\ldots \) \(c_2 \) (\(e_2 \))

\(\vdots \)

\(n \)-cycles \(\ldots \) \(c_n \) (\(e_n \))

One choice for each odd \(\frac{e_i}{2} \): \(b \)

\(0 \leq b_1 \leq e_1 \)
\(0 \leq b_2 \leq e_2 \)
\(\vdots \)
\(0 \leq b_n \leq e_n \)

\(b_1 + 2b_2 + \ldots + nb_n = N \)

For each choice \(\frac{N}{2} \) we proceed to step II:

Step II

<table>
<thead>
<tr>
<th>steps</th>
<th>to do</th>
<th>#choices</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>decide which 1-cycles to color (c_1)</td>
<td>((e_1))</td>
</tr>
<tr>
<td>2</td>
<td>(\ldots) 2-cycles (\ldots)</td>
<td>((e_2))</td>
</tr>
<tr>
<td>(\vdots)</td>
<td>(\vdots)</td>
<td>(\vdots)</td>
</tr>
<tr>
<td>(n)</td>
<td>(\ldots) (n)-cycles (\ldots)</td>
<td>((e_n))</td>
</tr>
</tbody>
</table>
So

$$| C_{n_1, n_2} (f) | = \sum \left(\frac{e_1}{x_1} \right) \left(\frac{e_2}{x_2} \right) \cdots \left(\frac{e_n}{x_n} \right)$$

$$0 \leq x_1 \leq e_1$$
$$0 \leq x_2 \leq e_2$$
$$\vdots$$
$$0 \leq x_n \leq e_n$$
$$x_1 \cdot x_2 \cdot \ldots \cdot x_n = ne$$

This proves Polya's theorem with $p=2$.\[\square\]
Recall

\[X = \{1, 2, \ldots, n\} \]

\[G = \text{permutation group in } X \]

Cycle index of \(G \) is polynomial

\[P_G(z_1, z_2, \ldots, z_n) = \frac{\sum_{f \in G} \text{mm}(f)}{|G|} \]

For \(f \in G \)

\[\text{mm}(f) = z_1^{e_1} z_2^{e_2} \cdots z_n^{e_n} \]

\[e_k = \# k\text{-cycles in cycle factorization of } f \]

Fix \(p \geq 1 \)

distinct colors \(c_1, c_2, \ldots, c_p \)

corresponding variables \(u_1, u_2, \ldots, u_p \)

Polya theorem: Generating function for colorings of \(X \) up to \(G \)-equivalence

\[= P_G(u_1^0 + u_2^0 + \ldots + u_p^0, u_1^1 + u_2^1 + u_3^1 + \ldots + u_p^1, \ldots, u_1^p + u_2^p + \ldots + u_p^p) \]
This means the following:

For each monomial

$$u_1^{n_1} u_2^{n_2} \ldots u_p^{n_p}$$

in \(\ast \) the following are the same:

(i) the coefficient of \(u_1^{n_1} u_2^{n_2} \ldots u_p^{n_p} \)

(ii) Up to \(G \)-equivalence, the number of colorings of \(X \) with

\[
\begin{align*}
&n_1 \text{ vertices colored } c_1, \\
&n_2 \text{ vertices colored } c_2, \\
&\vdots \\
&n_p \text{ vertices colored } c_p
\end{align*}
\]
Ex. Consider regular 5-gon $X = \{1, 2, 3, 4, 5\}$

$G = \sigma \rho + \text{symmetries}
= \text{dihedral group of order 10}
= \{ \rho^k \}_{i=0}^9 \cup \{ \rho^i \sigma \}_{i=0}^4$

$\rho = \text{clockwise 72° rotation}$
$\sigma = \text{reflection}$

Find ρG
<table>
<thead>
<tr>
<th>f</th>
<th>cycle factorization of f</th>
<th>$\text{mm}(f)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>{}</td>
<td>$\frac{5}{z_1}$</td>
</tr>
<tr>
<td>ρ</td>
<td>[\text{pentagon}]</td>
<td>z_5</td>
</tr>
<tr>
<td>ρ^2</td>
<td>[\text{pentagon}]</td>
<td>z_5</td>
</tr>
<tr>
<td>ρ^3</td>
<td>[\text{pentagon}]</td>
<td>z_5</td>
</tr>
<tr>
<td>ρ^4</td>
<td>[\text{pentagon}]</td>
<td>z_5</td>
</tr>
<tr>
<td>τ</td>
<td>[\text{pentagon}]</td>
<td>$z_1^2 z_2$</td>
</tr>
<tr>
<td>$\rho \tau$</td>
<td>[\text{pentagon}]</td>
<td>$z_1^2 z_2$</td>
</tr>
<tr>
<td>$\rho^2 \tau$</td>
<td>[\text{pentagon}]</td>
<td>$z_1^2 z_2$</td>
</tr>
<tr>
<td>$\rho^3 \tau$</td>
<td>[\text{pentagon}]</td>
<td>$z_1^2 z_2$</td>
</tr>
<tr>
<td>$\rho^4 \tau$</td>
<td>[\text{pentagon}]</td>
<td>$z_1^2 z_2$</td>
</tr>
</tbody>
</table>

$$p_6 \left(\frac{z_1}{z_1} + \frac{z_2}{z_2} + \frac{z_3}{z_3} + \frac{z_4}{z_4} + \frac{z_5}{z_5} \right) = \frac{5}{z_1 + 9 z_2^2 + 4 z_5}$$
Take \(p = 3 \) colors

<table>
<thead>
<tr>
<th>(c_i)</th>
<th>Red</th>
<th>White</th>
<th>Blue</th>
</tr>
</thead>
<tbody>
<tr>
<td>(u_i)</td>
<td>(r)</td>
<td>(w)</td>
<td>(b)</td>
</tr>
</tbody>
</table>

Find some Polya generating function

\[
P_6 (r+w+b, r^2 w + b^2, r^3 w^2 + b^3, r^4 w^3 + b^4, r^5 w^5 + b^5)
\]

\[
= \frac{(r+w+b)^5 + 5(r+w+b)(r^2 w + b^2)^2 + 4(r^5 w^5 + b^5)}{10}
\]

Up to \(G \)-equivalence, find the number of ways to color the vertices in \(X \) such that

- 2 vertices colored Red,
- 2 vertices colored White,
- 1 vertex colored Blue.

\textbf{Sols.} In Polyga generating function

\[
\text{cof of } r^2 w^2 b = \frac{\left(\frac{5}{2 \pi i} \right) + 5 \times 2}{10}
\]

\[
= 4
\]
The colorings are:

1. B
 - R
 - W
 - W

2. B
 - W
 - R

3. B
 - W
 - R
 - W

4. B
 - W
 - R
 - R
Consider regular 8-gon

\[X = \{1, 2, \ldots, 8\} \]

\[G = \text{group of symmetries} \]
\[= \text{Dihedral group order 16} \]
\[= \mathbb{Z}_8 \times \mathbb{Z}_2 \cup \mathbb{Z}_4 \times \mathbb{Z}_2 \]

\[\rho = 90^\circ \text{ clockwise rot} \]

\[\tau = \text{reflection} \]

Find \(P_6 \)
<table>
<thead>
<tr>
<th>(f)</th>
<th>cycle factorization of (f)</th>
<th>(\text{mm}(f))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>[\cdots]</td>
<td>(\mathbb{Z}_1^e)</td>
</tr>
<tr>
<td>(p)</td>
<td>[\bigcirc]</td>
<td>(\mathbb{Z}_2^g)</td>
</tr>
<tr>
<td>(p^2)</td>
<td>[\square]</td>
<td>(\mathbb{Z}_2^2)</td>
</tr>
<tr>
<td>(p^3)</td>
<td>[\bigcirc]</td>
<td>(\mathbb{Z}_2^g)</td>
</tr>
<tr>
<td>(p^4)</td>
<td>[\cdots]</td>
<td>(\mathbb{Z}_2^4)</td>
</tr>
<tr>
<td>(p^5)</td>
<td>[\bigcirc]</td>
<td>(\mathbb{Z}_2^g)</td>
</tr>
<tr>
<td>(p^6)</td>
<td>[\square]</td>
<td>(\mathbb{Z}_2^2)</td>
</tr>
<tr>
<td>(p^7)</td>
<td>[\bigcirc]</td>
<td>(\mathbb{Z}_2^g)</td>
</tr>
<tr>
<td>(\tau)</td>
<td>[\cdots]</td>
<td>(\mathbb{Z}_2^4)</td>
</tr>
<tr>
<td>(p \tau)</td>
<td>[\cdots]</td>
<td>(\mathbb{Z}_1^4)</td>
</tr>
<tr>
<td>(p^2 \tau)</td>
<td>[\cdots]</td>
<td>(\mathbb{Z}_1^2 \mathbb{Z}_2^3)</td>
</tr>
<tr>
<td>(p^3 \tau)</td>
<td>[\cdots]</td>
<td>(\mathbb{Z}_2^4)</td>
</tr>
<tr>
<td>(p^4 \tau)</td>
<td>[\cdots]</td>
<td>(\mathbb{Z}_1^2 \mathbb{Z}_2^3)</td>
</tr>
<tr>
<td>(p^5 \tau)</td>
<td>[\cdots]</td>
<td>(\mathbb{Z}_2^4)</td>
</tr>
<tr>
<td>(p^6 \tau)</td>
<td>[\cdots]</td>
<td>(\mathbb{Z}_1^2 \mathbb{Z}_2^3)</td>
</tr>
<tr>
<td>(p^7 \tau)</td>
<td>[\cdots]</td>
<td>(\mathbb{Z}_2^4)</td>
</tr>
</tbody>
</table>

\[
\rho_G(z_1, \ldots, z_8) = \frac{z_1^8 + 4z_1^2 z_2^3 + 5z_2^4 + 2z_4^2 + 4z_8}{16}
\]
Up to G-equiv, how many ways to color the vertices in X with colors Red, white, Blue?

Sol

Set $Z_i = 3$ for $1 \leq i \leq 8$

$$p_G(3, 3, \ldots, 3) = \frac{3^8 + 4 \cdot 3^5 + 5 \cdot 3^4 + 2 \cdot 3^2 + 4 \cdot 3}{16}$$

$$= 166 \times 3$$

$$= 498$$
Ex. Let n be a prime number.

Fix $p \geq 1$, Dist. Colors c_1, \ldots, c_p.

How many different necklaces can be made using n beads with alone colors?

Let X be set of bead locations $= \{1, 2, \ldots, n\}$.

Here symmetry π is

$G = \text{dihedral}_n \times \text{order } \mathbb{Z}_n$

$= \{ \rho^i \}_{i=0}^{n-1} \cup \{ \rho^i \circ \tau \}_{i=0}^{n-1}$

$\rho = \text{clockwise rotation} \text{ thru } \frac{360}{n} \text{ degrees}$

$\tau = \text{reflection}$

Find P_6

<table>
<thead>
<tr>
<th>f</th>
<th>Cycle factorization</th>
<th>$mm(f)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>\cdots</td>
<td>\mathbb{Z}_n</td>
</tr>
<tr>
<td>ρ^i</td>
<td>\bigcirc</td>
<td>\mathbb{Z}_n</td>
</tr>
<tr>
<td>$\rho^i \circ \tau$</td>
<td>\xrightarrow{i}</td>
<td>$\mathbb{Z}_1 \times \mathbb{Z}_2$</td>
</tr>
</tbody>
</table>

$P_6(z_1, \ldots, z_n) = \frac{z_1^n + (n-1) \mathbb{Z}_n + n \mathbb{Z}_1 \mathbb{Z}_2^{\frac{2}{n}}}{\mathbb{Z}_n}$
necklaces

= \# \text{ways to color } X \text{ with colors } c_1, c_2, \ldots, c_p \\
\text{(up to } G\text{-equivalence)}

= P_G(p, p, \ldots, p)

= \frac{p^n + (n-1)p + np^{\frac{\Delta H}{2}}}{2n}

Now for \(p = 2 \) colors Red, Blue

Find the Polya gen function

<table>
<thead>
<tr>
<th>\xi_i</th>
<th>Red</th>
<th>Blue</th>
</tr>
</thead>
<tbody>
<tr>
<td>\omega</td>
<td>r</td>
<td>b</td>
</tr>
</tbody>
</table>

Polya Gen function

\[P_G(r + b, r^2 + b^2, \ldots, r^n + b^n) \]

= \frac{(r+b)^n + (n-1)(r^n+b^n) + n(r+b)(r^2+b^2)^{\frac{\Delta H}{2}}}{2n}
Ex. Find the cycle index for the dihedral group D_{2p} if p is prime.

$(9p$ has order $4p)$

Sol. View G as corner-symmetry group of regular $2p$-gon.

$G = \left\{ p^i \zeta_3^j \mid i = 0, \ldots, n \right\} \cup \left\{ p^i \rho \zeta_3^j \mid i = 0, \ldots, n \right\}$

ρ: clockwise rot thru $\frac{360}{n}$

τ: reflection
<table>
<thead>
<tr>
<th>f</th>
<th>cycle factorization of f</th>
<th>$\text{mm}(f)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>$\overbrace{\cdots \cdot \cdot}^{n}$</td>
<td>\mathbb{Z}_1</td>
</tr>
<tr>
<td>p^i</td>
<td>n-cycle</td>
<td>\mathbb{Z}_n</td>
</tr>
<tr>
<td>$i \text{ odd}$</td>
<td>$\leq i < n$</td>
<td>\mathbb{Z}_i</td>
</tr>
<tr>
<td>p^i</td>
<td>$\circ \circ$</td>
<td>$\mathbb{Z}_1 \times \mathbb{Z}_2^{r^r}$</td>
</tr>
<tr>
<td>$i \text{ even}$</td>
<td>$\leq i < n$</td>
<td>\mathbb{Z}_2^r</td>
</tr>
<tr>
<td>$p^i \cdot r$</td>
<td>$\leq i \leq n-1$</td>
<td>$\mathbb{Z}_1 \cdot \mathbb{Z}_2^r$</td>
</tr>
<tr>
<td>$p^i \cdot r$</td>
<td>$i \text{ odd}$</td>
<td>\mathbb{Z}_2^r</td>
</tr>
<tr>
<td>$0 \leq i < n$</td>
<td>$\mathbb{Z}_1 \cdot \mathbb{Z}_2^r$</td>
<td></td>
</tr>
</tbody>
</table>

\[p_6(z_1, \ldots, z_n) = \frac{z_1^{2r} + p \cdot z_{2r} + (p - 1) \cdot z_r^{2r} + p \cdot z_1^{2} \cdot z_2^{p^r} + p \cdot z_2^p}{4p} \]
Ex. Find the Polya gen function for the number of\ndifferent necklaces that can be
made with $2p$ beads and two colors Red, Blue
$p = \text{prime}$

Sol. In prev problem replace

$$Z_i = r^i + b^i \quad 1 \leq i \leq 2p$$

Polya Gen Function is

$$\frac{(r+b)^{2p} + p(r^{2p} + b^{2p}) + (p)(r^p+b^p)^2 + p(r+b)(r^2+b^2)^p + p(r^2b^2)^p}{4p}$$

The End ♡