Ch 4 Generating Permutations and Combinations

4.1 Generating permutations

Probs: List all the permutations of \(\{1, 2, \ldots, n\} \)

ex: \(n = 3 \)

\[
\begin{align*}
123 \\
132 \\
213 \\
231 \\
312 \\
321
\end{align*}
\]

For large \(n \), hard to keep track!

We now present a listing method with nice properties

\(n = 2 \)

\[
\begin{align*}
12 \\
21
\end{align*}
\]

\(n = 3 \) In the \(n = 2 \) list, insert 3 in all possible ways as follows:

\[
\begin{align*}
123 \\
132 \\
312 \\
321 \\
231 \\
213
\end{align*}
\]
$n=4$

\[
\begin{align*}
1 & 2 & 3 & 4 & \rightarrow & 1243 & \rightarrow & 1234 & \rightarrow & 4123 \\
3 & 1 & 2 & 4 & \leftarrow & 3124 & \leftarrow & 1324 & \leftarrow & 4132 \\
3 & 2 & 1 & 4 & \downarrow & 3214 & \downarrow & 3241 & \downarrow & 4321 \\
2 & 3 & 1 & 4 & \rightarrow & 2314 & \rightarrow & 2341 & \rightarrow & 4231 \\
2 & 1 & 3 & 4 & \leftarrow & 2134 & \leftarrow & 2143 & \leftarrow & 4213 \\
\end{align*}
\]

$n=5$ similar

For $n=2$, the list of permutations of $\{1,2,\ldots,n\}$ is obtained from the list of permutations of $\{1,2,\ldots,n-1\}$ by inserting "n" in all possible ways, as shown above.
Nice properties

Given a permutation \(a_1 a_2 \ldots a_n \) of \(\{1, 2, \ldots, n\} \)

A transposition of \(a_1 a_2 \ldots a_n \) switches adjacent terms

\[
\begin{array}{c}
\downarrow & \downarrow & \downarrow & \downarrow \\
 a_1 a_2 & a_1 a_n & \ldots & a_n \\
\end{array}
\]

"the transposition"

\[
\begin{array}{c}
\downarrow & \downarrow & \downarrow & \downarrow \\
 a_1 a_2 & a_3 a_4 & \ldots & a_n \\
\end{array}
\]

\(a_1 a_2 \ldots a_n \) has \(n-1 \) transpositions

\(\text{ex} \ n=4 \)

\[
\begin{array}{c}
1423 \\
\downarrow & \downarrow & \downarrow & \downarrow \\
1243 & 1423 & 1432 \\
\end{array}
\]

1st trans
2nd trans
3rd trans

* In our list of perms of \(\{1, 2, \ldots, n\} \)
each perm in list is a transposition of
the preceding perm. Also, the first
perm is a transposition of last perm.
ex n = 3

\[
\begin{array}{c}
\text{start} \rightarrow \quad 1 \quad 2 \quad 3 \\
\quad \quad \quad \downarrow \quad \quad \quad \quad \downarrow \\
2 \quad 1 \quad 3 \\
\quad \quad \quad \downarrow \quad \quad \quad \quad \downarrow \\
3 \quad 2 \quad 1 \\
\end{array}
\]

\[a = 1\text{st transposition}\]
\[b = 2\text{nd transposition}\]
Listing order follows path

\[a = \text{kit transposition} \]
\[b = 2\text{nd} \]
\[c = 3\text{d} \]

View as polytope in 3 dimensions
Problem: Given perm \(a_1 a_2 \ldots a_n \) of \{1, 2, \ldots, n\}, what is the next perm in our list?

- Appears difficult to answer without reproducing the entire list up to \(a_1 a_2 \ldots a_n \).

- To remove this difficulty, we add information as follows:

- For \(i \) \in \{1, 2, \ldots, n\} assign a direction to \(a_i \):
 \[
 a_k \rightarrow a_i \leftarrow a_k
 \]

- For \(i \) \in \{1, 2, \ldots, n\} called mobile if its arrow points to an adjacent smaller member.

\(n=5 \)

\[
\begin{array}{cccc}
\rightarrow & \leftarrow & \leftarrow & \leftarrow \\
4 & 5 & 1 & 3 & 2 \\
\uparrow & \nearrow & & & \\
& mobile & & & \\
\end{array}
\]
The following algorithm generates all the permutations of \(\{1, 2, \ldots, n\} \) in the order that we discussed earlier:

1. Start with \(1 \ 2 \ \ldots \ n \)

While there exists a mobile integer do:

1. Find the largest mobile integer \(m \)
2. Switch \(m \) with its adjacent integer it points to
3. Change the direction of each integer greater than \(m \)
4.2 Inversions of Permutations

For an integer $n \geq 1$

there are $n!$ perms of $\{1,2,\ldots,n\}$

Consider Cartesian product

$$\{0,1,\ldots,n-1\} \times \{0,1,\ldots,n-2\} \times \cdots \times \{0,1,2\} \times \{0,1\} \times \{0\}$$

(*)

The set (*) has $n!$ elements.

Next goal: display a bijection between (*) and the set of all perms of $\{1,2,\ldots,n\}$

Given a perm a_1, a_2, \ldots, a_n of $\{1,2,\ldots,n\}$

an inversion of this perm is an ordered pair (a_k, a_l)

such that

$k < l$ and $a_k > a_l$

"a_k and a_l are out of order"
Given a permutation \(a_1a_2\ldots a_n \) of \(1, 2, \ldots, n \)

For \(1 \leq i \leq n \) let

\[
b_i = \# \text{ of inversions that have } i \text{ as } i^{th} \text{ term}
\]

\[
= \# \text{ of elements among } a_1, a_2, \ldots, a_n \text{ that are larger than } i \text{ and appear to left of } i.
\]

The sequence \((b_1, b_2, \ldots, b_n) \) is called the inversion sequence.

For \(a_1a_2\ldots a_n \).

Note \(b_1 + b_2 + \ldots + b_n = \) total number of inversions for \(a_1a_2\ldots a_n \).

\[\text{ex} \quad n=4 \quad \text{perm} \ 4132 \]

\[
\begin{array}{c|cccc}
 i & 1 & 2 & 3 & 4 \\
 \hline
 b_i & 1 & 2 & 1 & 0
\end{array}
\]

\[1 + 2 + 1 + 0 = 4 = \# \text{ inversions for } 4132\]
LEM Given a perm \((a_1, a_2, \ldots, a_n)\) with inversion sequence \((b_1, b_2, \ldots, b_n)\)

then

\[
\begin{align*}
0 &\leq b_1 \leq n-1 \\
0 &\leq b_2 \leq n-2 \\
0 &\leq b_3 \leq n-3 \\
& \vdots \\
0 &\leq b_{n-2} \leq 1 \\
0 &\leq b_{n-1} \leq 1 \\
o &\geq b_n
\end{align*}
\]

pf For \(1 \leq i \leq n\) show

\[0 \leq b_i \leq n-i\]

Call the perm \((a_1, a_2, \ldots, a_n)\)

\[b_i = \# \text{ elements among } a_1, a_2, \ldots, a_n \text{ that are larger than } i
\text{ and to left of } i
\]

\[\leq \# \text{ elements among } a_1, a_2, \ldots, a_n \text{ that are larger than } i
\text{ \underline{choices} } a_1, a_2, \ldots, a_n, n
\]

\[\leq n-i
\]
We can recover a perm of \(1, 2, \ldots, n \) from its inversion sequence as follows.

Example: \(n = 6 \)

<table>
<thead>
<tr>
<th>1 2 3 4 5 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 0 2 1 1 0</td>
</tr>
</tbody>
</table>

Find any perm and answer \#6

Method 1

6
6 5
6 4 5
6 4 3 5
2 6 4 3 5
2 6 4 3 4 5

Method 2

1
2 1
2 3 1
2 4 3 1
2 4 3 1 5
2 6 4 3 1 5
In summary we have

Theorem: Given an integer \(n \geq 2 \),

the function which sends a permutation of \(\{1,2,...,n\} \) to its

inversion sequence is a bijection from the set

of all permutations of \(\{1,2,...,n\} \) to the set

\[
\{0,1,...,n-2\} \times \{0,1,...,n-2\} \times \cdots \times \{0,1,2\} \times \{0\} \times \{0\}
\]

\[(\ast)\]

Proof: Cardinality of set \((\ast)\) is \(n! \),

\[
= \text{\# perms of } \{1,2,...,n\}
\]

So suffices to show function is 1-1.

The function is 1-1 since each perm of \(\{1,2,...,n\} \) is determined

by its inversion sequence.

\(\square\)
Given a perm \(a_1 a_2 \ldots a_n \) of \(\{1, 2, \ldots, n\} \)

with inversion sequence \((b_1, b_2, \ldots, b_n) \).

Recall

\[b_1 + b_2 + \ldots + b_n = \text{total number of inversions} \]

"inversion number" = "length"

The inversion number is equal to the minimum number of transpositions required to bring \(a_1 a_2 \ldots a_n \) to \(1 2 3 \ldots n \).

Reason:

Let \(l = \text{inversion number of } a_1 a_2 \ldots a_n \)

At most \(l \) transpositions required:

- Use \(b_1 \) transpositions to move "1" to position 1.

 \[1 \text{xx} \ldots \text{xx} \]

- Use \(b_2 \) transpositions to move "2" to position 2.

 \[\text{1xx} \ldots \text{xx} 2 \]

- Use \(b_n \) transpositions to move "n" to position n.

 \[\text{1xx} \ldots \text{xx} n \]

At least \(l \) transpositions required: each transposition changes the inversion number by \(\pm 1 \).
ex \(n=6 \) \(\text{perm} \) 624135

<table>
<thead>
<tr>
<th>(i)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>(b_i)</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Inversion sequence

Inversion number = \(3 + 1 + 2 + 1 + 1 + 0 \)

= 8

Bring 624135 to 123456 using 8 transpositions:

<table>
<thead>
<tr>
<th>(\text{perm})</th>
<th>(\text{to do})</th>
<th>(# \text{transpositions used})</th>
</tr>
</thead>
<tbody>
<tr>
<td>624135</td>
<td>move "1"</td>
<td>3</td>
</tr>
<tr>
<td>(\times) 621435</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\times) 612435</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\times) 162435</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\times) 126435</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\times) 126345</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\times) 123645</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\times) 123465</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\times) 123456</td>
<td></td>
<td></td>
</tr>
<tr>
<td>123456</td>
<td>move "6"</td>
<td>0</td>
</tr>
</tbody>
</table>
4.3 Generating Combinations

Problem: Given a set S with $|S| = n$

List all the subsets of S

Ex $n=3$ $S = \{1, 2, 3\}$

One list is

$\emptyset \, \{1\} \, \{2\} \, \{3\} \, \{1, 2\} \, \{1, 3\} \, \{2, 3\} \, \{1, 2, 3\}$

For large n gets complicated

We now present a listing method with nice properties

From now on take

$S = \{x_{n-1}, x_{n-2}, \ldots, x_2, x_1, x_0\}$

Step 1

We identify each subset Ω of S with a sequence

$a_n a_{n-1} \ldots a_1 a_0$ of zeros and ones.

For $0 \leq i \leq n-1$

$$a_i = \begin{cases} 1 & \text{if } x_i \in \Omega \\ 0 & \text{if } x_i \notin \Omega \end{cases}$$
Exercise \(n = 6 \)

\[S = \{ x_5, x_4, x_3, x_2, x_1, k_0 \} \]

Take

\[\Omega = \{ x_0, x_1, x_2 \} \]

<table>
<thead>
<tr>
<th>(x_5)</th>
<th>(x_4)</th>
<th>(x_3)</th>
<th>(x_2)</th>
<th>(x_1)</th>
<th>(x_0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Step 2

View each sequence of zeros and ones as the "base 2" representation of a non-negative integer.

Example: The sequence 0 1 0 0 1 1 0 corresponds to the integer

\[
0 \cdot 2^5 + 1 \cdot 2^4 + 0 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2^1 + 1 \cdot 2^0 + 0 \cdot 2^0 \\
= 16 + 4 + 2 \\
= 22
\]
ex. Find the base 2 representation of 57

Sol.

Recall

<table>
<thead>
<tr>
<th>2^0</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>32</td>
<td>16</td>
<td>8</td>
<td>4</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

take out 32

\[
\begin{array}{c}
57 \\
-32 \\
-32 \\
25 \\
-16 \\
-16 \\
9 \\
-9 \\
-9 \\
8
\end{array}
\]

answer = 111001
Step 3

the list

\[0, 1, 2, 3, \ldots, 2^n - 1 \]

de of integers, each expressed in base 2,
effectively gives all 2^n subsets
of an n-element set

"squashed order"

\[\text{ex } n=3 \]

<table>
<thead>
<tr>
<th>m</th>
<th>m in base 2</th>
<th>correspond subset of {x_2, x_1, x_0}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>000</td>
<td>(\emptyset)</td>
</tr>
<tr>
<td>1</td>
<td>001</td>
<td>{x_0}</td>
</tr>
<tr>
<td>2</td>
<td>010</td>
<td>{x_1}</td>
</tr>
<tr>
<td>3</td>
<td>011</td>
<td>{x_1, x_0}</td>
</tr>
<tr>
<td>4</td>
<td>100</td>
<td>{x_2}</td>
</tr>
<tr>
<td>5</td>
<td>101</td>
<td>{x_2, x_0}</td>
</tr>
<tr>
<td>6</td>
<td>110</td>
<td>{x_2, x_1}</td>
</tr>
<tr>
<td>7</td>
<td>111</td>
<td>{x_2, x_1, x_0}</td>
</tr>
</tbody>
</table>
ex \ F_n \ n=7

Consider subset

\{ x_5, x_4, x_2, x_1, x_0 \}

f

S = \{ x_5, x_4, x_3, x_2, x_1, x_0 \}

Find the next subset in the squashed order.

Sol. Convert to base 2:

\[
\begin{array}{cccccccc}
 x_6 & x_5 & x_4 & x_3 & x_2 & x_1 & x_0 \\
 0 & 1 & 1 & 0 & 1 & 1 & 1 \\
\end{array}
\]

add 1:

\[
\begin{array}{cccccccc}
 0 & 1 & 1 & 0 & 1 & 1 & 1 \\
+ & 0 & 0 \\
\hline
 0 & 1 & 1 & 1 & 0 & 0 & 0 \\
\end{array}
\]

Convert back:

\[
\{ x_5, x_4, x_3 \}
\]
We just showed how to list the subsets of an n-element set.

We now give an alternative approach using Gray codes.

Problem For n = 1, list all the n-tuples of zeros and ones such that each n-tuple differs from previous one in exactly one coordinate.

Such a list is called a Gray code of order n.

Example n = 3

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Definition A Gray code is cyclic whenever 1st term and last term differ in exactly one coordinate.
Geometric interpretation of Gray codes

For an integer \(n \geq 1 \) we define a graph called the \(n \)-cube.

- The vertex set \(X \) consists of all \(n \)-tuples of 0's and 1's. So \(|X| = 2^n \).
- Two vertices are declared adjacent whenever they differ in exactly one coordinate.

<table>
<thead>
<tr>
<th>(n)</th>
<th>(n)-cube</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0 — 1</td>
</tr>
<tr>
<td>2</td>
<td>(\begin{array}{c} 10 — 11 \ 00 — 01 \end{array})</td>
</tr>
<tr>
<td>3</td>
<td>(\begin{array}{c} 110 — 111 \ 010 — 011 \ 000 — 001 \ 100 — 101 \end{array})</td>
</tr>
</tbody>
</table>
Observe

1. A Gray Code of order n is a path through the n-cube that visits each vertex exactly once.

2. The Gray Code is cyclic, where the last vertex is adjacent to the first vertex.

Example: $n = 3$

```
110 → 111 → 101 → 001 → 011 → 010 → 110
```

0 = start

cyclic

Gray Code
We now describe a special cyclic Gray code called the Reflected Gray Code.

To display the reflected Gray code of order 4,

<table>
<thead>
<tr>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Algorithm to obtain the reflected Gray code of order n:

- Reflected Gray code of order $n=1$ is $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

- For $n \geq 2$, the reflected Gray code of order n is obtained from the reflected Gray code of order $n-1$ by creating 2 copies, with the 2nd copy in inverted order.
 - In each term in Copy 1, add a leading 0.
 - In each term in Copy 2, add a leading 1.
Lecture 11 Friday Sept 28

We continue to discuss the reflected Gray codes.

Problem: Given a term in the reflected Gray code of order n:

$g_0 \ldots g_{2^n} g_0$

(i) What is next term?
(ii) What is preceding term?

If we list the codewords for small values of n,

the following pattern emerges.

For (i), (ii) we just need to specify which codeword to change.

(i) $F_n \sum_{i=0}^{n-1} g_i$ even change g_0

(ii) $F_n \sum_{i=0}^{n-1} g_i$ odd change g_n for the unique integer $2 \leq 1$ such that $g_{n-1} = 1$ and each of $g_0, g_1, \ldots, g_{2^n}$ is a 0.

\[\ldots \ast \ast \square 100 \ldots 0 \]

-> change
(i) $F_n \sum_{i=0}^{n-1} g_i$ odd, change g_0

For $\sum_{i=0}^{2n-1} g_i$ even, change g_0 for some unique integer $i \geq 1$ such that $g_{i-1} = 1$ and each of $g_0, g_1, \ldots, g_{i-2} = 0$

Ex: Consider reflected Gray code of order 8

For the term

<table>
<thead>
<tr>
<th></th>
<th>7 6 5 4 3 2 1 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>g_i</td>
<td>1 0 1 0 0 1 1 0</td>
</tr>
</tbody>
</table>

(i) Find next term

(ii) Find preceding term

Note $\sum g_i = 4$ is even

(iii) Change g_0:

ans = 1 0 1 0 0 1 1 1

(iii) Find i such that $g_{i-1} = 0$ and $g_i = 1$

\[g_0 g_1 \ldots g_{i-1} = \square 10 \ldots 00 \]

$g_{i-2} = 1$

\[\uparrow \text{change} \]

ans = 1 0 1 0 0 0 1 0
4.4 Generating r-subsets

Problem
Given a finite set \(S \).
Given integer \(r \) s.t. \(1 \leq r \leq |S| \).
List all the \(r \)-subsets of \(S \).

Solution 1:
List all the \(r \)-subsets of \(S \) using the method of Section 4.2.
Discard each term that does not have cardinality \(r \).

Solution 2:
Use lexicographical order as described below.

Example
\(|S| = 26 \), \(r = 3 \)

View \(S \) as the letters of the alphabet:
\(S = \{a, b, c, \ldots \} \).

View each \(3 \)-subset of \(S \) as a word of length 3 and list them in alphabetical order:

\[
\begin{align*}
XYZ & \quad \text{ Lex order} \\
abc & \quad \text{ Lex order} \\
abd & \quad \text{ Lex order} \\
abc & \quad \text{ Lex order} \\
abz & \quad \text{ Lex order} \\
acd & \quad \text{ Lex order} \\
ace & \quad \text{ Lex order} \\
acz & \quad \text{ Lex order} \\
ace & \quad \text{ Lex order}
\end{align*}
\]
Ex. Index order, list all the 3-sets of \{1, 2, 3, 4, 5\}.

Sol. Consider alphabet with "letters" 1 < 2 < 3 < 4 < 5.

In alphabetical order, list all words of form \(xyz\) such that 1 < 4 < z < 5.

123
124
125
134
135
145
234
235
245
345
Ex. Consider the 5-subset of
\{1, 2, 3, 4, 5, 6, 7, 8, 9\}

in Lex order.

What is position \(1\) \(3\) \(4\) \(7\) \(8\) \(\text{ (X)}\)

If \((\text{X})\) is the \(m\)th term, what is \(m\)?

[start counting with \(m = 1\)]

Sol. Strategy: count the terms that come after \((\text{X})\).

<table>
<thead>
<tr>
<th>types of 5-subsets</th>
<th># choices</th>
</tr>
</thead>
<tbody>
<tr>
<td>No rest. abcde (1\leq a < b < c < d < e \leq 9)</td>
<td>(\binom{9}{5})</td>
</tr>
<tr>
<td>abcde (2 \leq a < b < c < d < e \leq 9)</td>
<td>(\binom{8}{5})</td>
</tr>
<tr>
<td>(1\text{bcd}e) (4 \leq b < c < d < e \leq 9)</td>
<td>(\binom{6}{4})</td>
</tr>
<tr>
<td>(1\text{cde}) (5 \leq c < d < e \leq 9)</td>
<td>(\binom{5}{3})</td>
</tr>
<tr>
<td>({1, 3, 4} \text{ac}) (8 \leq a < c \leq 9)</td>
<td>(\binom{2}{2}) = 1</td>
</tr>
<tr>
<td>({1, 3, 4} \text{ec}) (9 \leq e \leq 9)</td>
<td>(\binom{1}{1}) = 1</td>
</tr>
</tbody>
</table>

\(m = \binom{9}{5} - \binom{8}{5} - \binom{6}{4} - \binom{5}{3} - \binom{2}{2} - \binom{1}{1}\)
Then for $1 \leq r \leq n$ consider r-subsets of $\{1, 2, \ldots, n\}$ in lexicographic order.

The pos of the r-subset $\{a_1, a_2, \ldots, a_r\}$ where $1 \leq a_1 < a_2 < \cdots < a_r \leq n$ is

$$
\binom{n}{r} - \binom{n-a_1}{r} - \binom{n-a_2}{r} - \cdots - \binom{n-a_{r-1}}{r} - \binom{n-a_r}{1}
$$

pf. Same idea as in prev example. \qed
Problem

Given a finite set S

Given integer r with $0 \leq r \leq |S|$

List all the r-permutations of S

Sol:

First list the r-subsets of S in lexicographic order.

For each subset, list all the permutations of its elements using the method of Section 7.1.

Ex

List all the 3-perms of $\{1, 2, 3, 4, 5\}$.

Sol:

First list 3-subsets:

- $\{1, 2, 3\}$
- $\{1, 2, 4\}$
- $\{1, 2, 5\}$
- $\{1, 3, 4\}$
- $\{1, 3, 5\}$
- $\{1, 4, 5\}$
- $\{2, 3, 4\}$
- $\{2, 3, 5\}$
- $\{2, 4, 5\}$
- $\{3, 4, 5\}$

Expand:

- 123 132 213 231 312 321
- 124 142 214 241 412 421
- 134 143 314 341 431 432
- 234 243 324 342 423 432
4.5 Partial Orders and Equivalence Relations

Consider a set \(X \)

Consider the Cartesian product

\[X \times X = \{ (a,b) \mid a, b \in X \} \]

A subset

\[R \subseteq X \times X \]

is called a relation on \(X \)

For \(a, b \in X \) write

\[a \mathbin{R} b \quad \text{whereas} \quad (a, b) \in R \quad \text{"}a\text{ is related to } b\text{"

\[a \not\mathbin{R} b \quad \ldots \quad (a, b) \notin R \quad \text{"}a\text{ is not related to } b\text{"

Ex 1 \(X = \) set of integers

\[\forall a, b \in X \]

\[a \mathbin{R} b \quad \text{whereas} \quad a - b \text{ is even} \]

Ex 2 \(X = \) set of all subsets of \(\{ 1, 2, \ldots, n \} \)

\[\forall a, b \in X \]

\[a \mathbin{R} b \quad \text{whereas} \quad a \subseteq b \]
Ex 3 \(X = \{1, 2, \ldots, 100\} \)

\[\forall a, b \in X \]

\[a R b \quad \text{ whenever } a < b \]

We now list some important conditions on relations.

Given a relation \(R \) on a set \(X \),

<table>
<thead>
<tr>
<th>Condition</th>
<th>Meaning</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reflexive</td>
<td>(x R x) (for all (x \in X))</td>
<td>1, 2</td>
</tr>
<tr>
<td>Irreflexive</td>
<td>(x \not R x) (for all (x \in X))</td>
<td>3</td>
</tr>
<tr>
<td>Symmetric</td>
<td>(x R y) implies (y R x) (for all (x, y \in X))</td>
<td>1</td>
</tr>
<tr>
<td>Antisymmetric</td>
<td>For distinct (x, y \in X), [x R y] implies (y \not R x)</td>
<td>2, 3</td>
</tr>
<tr>
<td>Transitive</td>
<td>(x R y) and (y R z) implies (x R z) (for all (x, y, z \in X))</td>
<td>1, 2, 3</td>
</tr>
</tbody>
</table>
Def Given a relation R on a set X,

- Call R a **partial order** whenever R is reflexive, antisymmetric, transitive.

- Call R a **strict partial order** whenever R is irreflexive, antisymmetric, transitive.

- The set X together with a partial order on X is called a **partially ordered set** (poset).

- For \(x, y \in X \), call \(x \sim y \) **comparable** whenever \(xRy \) or \(yRx \).

- Call \(x \not\sim y \) **incomparable** whenever \(x \not\sim y \) and \(y \not\sim x \).

- Call R a **total order** whenever R is a partial order and \(x \sim y \) is comparable for all \(x, y \in X \).
Ex. Given integer $n \geq 1$

$X = \{1, 2, \ldots, n\}$

Given permutation a_1, a_2, \ldots, a_n of X

Define a relation R on X by:

$\forall \ x, y \in X$

$xRy \iff \ x = y$ or x comes before y among a_1, a_2, \ldots, a_n

Then R is a total order (check)

Ex. Given integer $n \geq 1$

$X = \{1, 2, \ldots, n\}$

Given total order R on X

Call an element $x \in X$ **minimal** whenever there does not exist $y \in X$ s.t. $y \neq x$ and yRx

Observe

X has **unique** minimal element a_1

$X \setminus \{a_1\} \ni a_2$

$X \setminus \{a_1, a_2\} \ni a_3$

\vdots

Then a_1, a_2, \ldots, a_n is permutation of X.
The previous 2 examples show:

Then, given integer \(n \geq 1 \)

\[X = \{ x_1, \ldots, x_n \} \]

There is a 1-1 correspondence between the total orders on \(X \)
and the permutations of \(X \).

A generic partial order on a set \(X \) is usually denoted \(\leq \).

For \(x, y \in X \) write \(x \leq y \) whenever \(x + y \) and \(x \neq y \).

Def: Given a set \(X \) with partial order \(\leq \)

For \(x, y \in X \) we say \(y \) covers \(x \) whenever

\(x < y \) and there does not exist \(z \in X \) such that

\(x < z < y \)

In this case write

\(x \prec y \)
Ex Take \(X = \{1, 2, 3, \ldots, 10\} \)

Define a partial order \(\leq \) on \(X \) by

\[x \leq y \text{ whenever } x \mid y \ (x \text{ divides } y) \]

Describe the carre relation \(<_c \)

Sol. For \(x, y \in X \) draw

\[
\begin{array}{c}
\text{Hasse diagram}
\end{array}
\]

where \(x <_c y \)
Given a set S, let $\mathcal{P}(S)$ denote the set of all subsets of S.

$\exists |\mathcal{P}(S)| = 2^n \quad n = |S|$

Observe the containment relation \subseteq is a partial order on $\mathcal{P}(S)$.

Ex. Take $S = \{1, 2, 3\}$

$X = \mathcal{P}(S)$

Describe the Hasse diagram for the poset X, \subseteq

It's like a 3-cube!
Def: Given a set X

Given 2 partial orders on X:

\leq_1, \leq_2

\leq_2 is called an extension of \leq_1 whenever

$x \leq_1 y \implies x \leq_2 y \quad \forall x, y \in X$

Def: Given a partial order \leq on a set X

A linear extension of \leq is an extension of \leq that is a total order.

Then let \leq denote a partial order on a finite set X, then \leq has at least one linear extension.

pf: Let $n = |X|$.

Let x_1 denote a minimal element of X

Let x_2 . . .

Let x_3 . . .

. . .

This gives ordering x_1, x_2, \ldots, x_n of elements of X
Define a total order on X as follows.

In the total order

x_i covers x_j if $i - 1 < j$.

So, the Hasse diagram is

```
      x_1
       |
     x_2  |
       |
     x_3
       |
     x_4
```

One checks the total order is a linear extension of \leq.

Ex. Consider poset with Hasse diagram

```
    c
   /\  
  /   \ 
 b     d
   \   /  
    \ b  
```

Find all the linear extensions.

Sol.

\[a < b < c < d < e \]

\[a < b < d < c < e \]

\[a < d < b < c < e \]
We now discuss equivalence relations.

Given set \mathbf{X}.

A relation R on \mathbf{X} is an equivalence relation whenever R is

reflexive, symmetric, transitive.

Example: $S = \{1, 2, \ldots, n\}$

$\mathbf{X} = \mathcal{P}(S)$

Define a relation R on \mathbf{X} by

xRy whenever $|x| = |y|$

then R is an equivalence relation.
Ex Given a set X

Partition X into nonempty subsets

$$X = X_1 \cup X_2 \cup \cdots \cup X_r$$ (disjoint union)

Define a relation R on X as follows:

For $x, y \in X$

$$xRy \quad \text{where } x, y \text{ are in the same part of the partition}$$

Then R is an equiv relation (check)

Ex Given an equiv relation R on a set X

For $x \in X$ define

$$[x] = \{ y \in X \mid xRy \}$$ \text{the equivalence class of } x

Observe $\forall x, y \in X$

$$[x] = [y] \quad \text{if } xRy$$

or

$$[x] \cap [y] = \emptyset \quad \text{if } x\notR y$$

Moreover the set of distinct equiv classes give a partition of X into nonempty subsets.

A generic equivalence relation is usually denoted by \sim