On the Derivative of an Eisenstein Series of Weight One

Stephen S. Kudla, Michael Rapoport, and Tonghai Yang

§0 Introduction

In [17], a certain family of Siegel Eisenstein series of genus \(g \) and weight \((g + 1)/2 \) was introduced. They have an odd functional equation and hence have a natural zero at their center of symmetry \((s = 0) \). It was suggested that the derivatives at \(s = 0 \) of such series, which we will refer to as incoherent Eisenstein series, should have some connection with arithmetical algebraic geometry. Some evidence was provided in the case of genus 2 and weight 3/2. In that case, certain of the Fourier coefficients of the central derivative were shown to involve (parts of) the height pairing of Heegner points on Shimura curves. Additional evidence occurred earlier in the work of Gross and Keating [12], where, implicitly, derivatives of Siegel Eisenstein series on \(\text{Sp}_3 \) of weight 2 arise. Higher dimensional cases are studied in [19] (\(\text{Sp}_4 \), weight 5/2) and [21] (\(\text{Sp}_3 \), weight 2).

In the present paper, we consider the simplest possible example of an incoherent Eisenstein series and its central derivative. More precisely, let \(q > 3 \) be a prime congruent to 3 modulo 4. There are two types of Eisenstein series of weight 1 associated to the imaginary quadratic field \(k = \mathbb{Q}(\sqrt{-q}) \). The first is a coherent Eisenstein series. For \(\tau = u + iv \) in the upper half-plane and \(s \in \mathbb{C} \) with \(\text{Re}(s) > 1 \), this series has the form

\[
E_+(\tau, s) = v^{s/2} \sum_{\gamma \in \Gamma_0 \setminus \Gamma} (c\tau + d)^{-1} |c\tau + d|^{-s} \Phi_q^+(\gamma),
\]

(0.1)

Received 17 September 1998. Revision received 11 December 1998.
where, for $\gamma = \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \in \Gamma = \text{SL}_2(\mathbb{Z})$,

$$\Phi_q^+(\gamma) = \begin{cases} \chi_q(a) & \text{if } c \equiv 0 \text{ mod}(q), \\ iq^{-1/2}\chi_q(c) & \text{if } c \text{ is prime to } q. \end{cases}$$ (0.2)

After analytic continuation to the whole s-plane, the normalized Eisenstein series

$$E^*_+ (\tau, s) = q^{(s+1)/2} \Lambda(s + 1, \chi_q) E_+ (\tau, s)$$ (0.3)

satisfies the functional equation $E^*_+ (\tau, -s) = E^*_+ (\tau, s)$. Here,

$$\Lambda(s, \chi_q) = \pi^{-s/2} \Gamma\left(\frac{s + 1}{2} \right) L(s, \chi_q).$$ (0.4)

The Siegel-Weil formula (due to Hecke in this case [16, pp. 454–455 combined with p. 453, (23) and p. 475]) yields

$$E^*_+ (\tau, 0) = 2h_k + 4 \sum_{n=1}^{\infty} \rho(n) e(n\tau),$$ (0.5)

where h_k is the class number of k, and, for a positive integer n, $\rho(n)$ is the number of integral ideals of k of norm n. The right-hand side of (0.5) is, of course, twice the sum of Hecke's theta functions of weight 1 (see [16, p. 440 (11)]),

$$\delta(\tau, a) = \sum_{x \in a} e\left(\frac{N(x)}{N(a)} \tau \right)$$ (0.6)

as the fractional ideal a runs over a set of ideal class representatives.

The second type of Eisenstein series associated to the imaginary quadratic field $k = \mathbb{Q}(\sqrt{-q})$ is the incoherent series

$$E_-(\tau, s) = q^{s/2} \sum_{\gamma \in \text{GL}_2(\mathbb{Z})} (c\tau + d)^{-1} |c\tau + d|^{-s} \Phi_q^- (\gamma),$$ (0.7)

where, for $\gamma = \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \in \Gamma$,

$$\Phi_q^- (\gamma) = \begin{cases} \chi_q(a) & \text{if } c \equiv 0 \text{ mod}(q), \\ -iq^{-1/2}\chi_q(c) & \text{if } c \text{ is prime to } q. \end{cases}$$ (0.8)
In this case, the normalized Eisenstein series

$$\mathcal{E}^*_{\tau, s} = q^{(s+1)/2} \Lambda(s + 1, \chi_q) E_{\tau, s}$$ \hspace{1cm} (0.9)$$

satisfies the functional equation $\mathcal{E}^*_{\tau, -s} = -\mathcal{E}^*_{\tau, s}$, so that $\mathcal{E}^*_{\tau, 0} = 0$. The modular form of weight 1 of interest to us is then

$$\phi(\tau) := -\frac{\partial}{\partial s} \left. \mathcal{E}^*_{\tau, s} \right|_{s=0} = -h_k \cdot \frac{\partial}{\partial s} \left. E_{\tau, s} \right|_{s=0},$$ \hspace{1cm} (0.10)$$

so that, up to sign, $\phi(\tau)$ is the leading term of the Laurent expansion of $\mathcal{E}^*_{\tau, s}$ at the central point $s = 0$.

Theorem 1. Let $e(\tau) = e^{2\pi i \tau}$. The nonholomorphic modular form ϕ has a Fourier expansion

$$\phi(\tau) = a_0(\phi, \nu) + \sum_{n<0} a_n(\phi, \nu) e(n\tau) + \sum_{n>0} a_n(\phi) e(n\tau),$$

where the coefficients are as follows. Let

$$\rho(n) = |\{a \subset \mathcal{O}_k | N(a) = n\}|,$$

so that

$$\zeta_k(s) = \sum_{n=1}^{\infty} \rho(n)n^{-s}$$

is the Dedekind zeta function of k. The constant term of ϕ is given by

$$a_0(\phi, \nu) = -h_k \cdot \left(\log(q) + \log(\nu) + 2 \frac{\Lambda(1, \chi_q)}{\Lambda(1, \chi_q)} \right).$$

For $n > 0$,

$$a_n(\phi) = 2 \log(q) (\text{ord}_q(n) + 1) \rho(n) + 2 \sum_{p \neq q} \log(p) \text{ord}_p(n) + 1) \rho(n/p),$$

where the sum runs over primes p which are inert in k. For $n < 0$,

$$a_n(\phi, \nu) = 2 \beta_1(4\pi |n| \nu) \rho(-n).$$

Here β_1 is essentially the exponential integral

$$\beta_1(t) = -\text{Ei}(-t) = \int_{1}^{\infty} u^{-1} e^{-ut} \, du.$$ \hspace{1cm} (0.11)$$

Since one of the aims of this paper is to illustrate the constructions of [17] in the simplest possible case, we work adelically, rather than classically. We obtain both the Fourier

$$\mathcal{E}^*_{\tau, s} = q^{(s+1)/2} \Lambda(s + 1, \chi_q) E_{\tau, s}$$ \hspace{1cm} (0.9)$$
expansion of $E(\tau, s) = E_{(\tau, s)}$ and its derivative by computing local Whittaker functions and their derivatives. This is done in Sections 1–3.

Following the tradition of Hecke, we next compute the Mellin transform of ϕ, or, more precisely, of ϕ with its constant term omitted, as follows:

$$\Lambda(s, \phi) := \int_0^\infty (\phi(iv) - a_0(\phi, v)) v^{s-1} \, dv. \quad (0.12)$$

This can be done termwise. Let $\Lambda(s)$ be the principal part of the Mellin transform of ϕ, or, more precisely, of ϕ with its constant term omitted, as follows:

$$\Lambda(s) = \pi^{-s/2} \Gamma(s/2) \zeta(s),$$

and let $\Lambda_k(s) = \Lambda(s) \Lambda(s, \chi_q)$. Theorem 2. The following identity holds.

$$\Lambda(s, \phi) = \Lambda_k(s) \left[\log(q) + \frac{\Lambda(s, \chi)}{\Lambda(s)} - \frac{\Lambda'(s)}{\Lambda(s)} \right]$$

What seems striking (to us) here is the occurrence of the difference of the logarithmic derivatives of $\Lambda(s, \chi)$ and $\Lambda(s)$. The computation is done in Section 4.

Next, we show that the Fourier coefficients of ϕ are connected with certain 0-cycles on an arithmetic curve. This arithmetic curve is defined as the moduli scheme M over $\text{Spec}(\mathcal{O}_k)$ of elliptic curves with complex multiplication ι by the ring of integers \mathcal{O}_k in k. For each positive integer n, there is a 0-cycle $Z(n)$ on M, which is the locus on which the elliptic curves have an additional endomorphism y with $y^2 = -n$, anticommuting with the action of \mathcal{O}_k, i.e., $y \cdot \iota(a) = \bar{\iota}(\bar{a}) \cdot y$, for $a \in \mathcal{O}_k$.

The following result is proved in Section 5 as an application of the classical theory of complex multiplication and its further development due to Gross and Zagier [11], [14].

Theorem 3. (i) For $n \in \mathbb{Z}_{>0}$, suppose that neither n nor n/p, for any prime p which is inert in k, is a norm of an integral ideal of \mathcal{O}_k; i.e., suppose that $\rho(n) = 0$ and $\rho(n/p) = 0$ for all inert primes p. Then the cycle $Z(n)$ is empty and $a_n(\phi) = 0$.

(ii) If $\rho(n) \neq 0$, then $\rho(n/p) = 0$ for all inert p, and the 0-cycle $Z(n)$ is supported in the fiber at q.

(iii) If p is an inert prime and $\rho(n/p) \neq 0$, then $\rho(n) = 0$ and $\rho(n/p') = 0$ for all inert primes $p' \neq p$, and the 0-cycle $Z(n)$ is supported in the fiber at p.

(iv) In all cases,

$$\deg(Z(n)) = a_n(\phi).$$

Here the degree of a 0-cycle $Z = \text{Spec}(\mathcal{R})$ is given by $\deg(Z) = \log |R|$.

We obtain the Fourier expansion

$$\phi(\tau) = a_0(\phi, v) + \sum_{n>0} \deg(Z(n)) q^n + 2 \sum_{n>0} \rho(n) \beta_1(4\pi nv) q^{-n}, \quad (0.13)$$
in which, for a moment, we write, \(q^n = e^{iπnt} = e^{2iπnt} \). As pointed out above, this expression provides some evidence in favor of the general proposals of [17]. In Section 6, we propose a modular definition of an Arakelov divisor \(Z(t, v) \) for \(t < 0 \) for which

\[
\deg(Z(t, v)) = a_t(\phi, v)
\]

as well.

Finally, J.-B. Bost has observed that the constant term of \(\phi \) can be expressed in terms of the Faltings height of an elliptic curve with complex multiplication by \(\mathcal{O}_k \). Let \(E \) be an elliptic curve with complex multiplication by \(\mathcal{O}_k \) defined over \(\overline{\mathbb{Q}} \). Then according to Colmez [3, p. 633], the Faltings height \(h_{\text{Fal}}(E) \) is given by

\[
4h_{\text{Fal}}(E) = -\log(q) - 2\log(2\pi) - \frac{L'(0, \chi)}{L(0, \chi)}.
\]

Therefore, after a short manipulation, we can rewrite the constant term as

\[
a_0(\phi, v) = -h_k(\log(v) + 4h_{\text{Fal}}(E) + C),
\]

where the constant

\[
C = \log(\pi) - \frac{\Gamma'(\frac{1}{2})}{\Gamma(\frac{1}{2})} + 2\log(2\pi)
\]

\[
= -\log(\pi) + \gamma + 4\log(2\pi)
\]

is independent of \(q \). It would be nice to obtain this identity in a more conceptual way, consistent with the situation for the positive Fourier coefficients.

The most general incoherent Eisenstein series on \(SL(2) \) are described in Section 1 from a representation theoretic point of view. In Section 6, we suggest the modifications which are necessary to extend Theorems 1 and 3 to the general case.

As far as we know, the modular form \(\phi \) does not appear in the classical literature. It resembles, however, the modular form of weight \(3/2 \) considered by Zagier [28], whose Fourier expansion is

\[
\phi_{\text{Zagier}}(\tau) = -\frac{1}{12} + \sum_{n>0} \deg(Z(n))q^n + v^{-1/2} \sum_{m \in \mathbb{Z}} \beta_{3/2}(4\pi m^2 v)q^{-m^2},
\]

\(^1\)As Colmez has pointed out to us, the quantity \(-2h_{\text{Fal}}(X) + 1/2\log D\) in the upper right-hand corner of the diagram on page 633 of [3] must be replaced by \(-2h_{\text{Fal}}(X) - 1/2\log D\).
where
\[\beta_{3/2}(t) = \frac{1}{16\pi} \int_1^\infty u^{-3/2} e^{-ut} \, du. \] (0.19)

Here we have momentarily changed notation and have denoted by \(Z(n) \) certain 0-cycles on a modular curve (over \(\mathbb{C} \)) (cf., for example, [1]). Zagier has observed that the coefficients of \(\phi \) actually occur in [14]. Let \(-d \) be a fundamental discriminant with \((d, q) = 1 \) and with \(d > 4 \). Let
\[J(-q, -d) = \prod_{\substack{|\tau| \leq q \\ \tau \neq \frac{1}{d} \tau_1 \neq \frac{1}{d} \tau_2 \\ d \text{ disc}(\tau) = -d}} (j(\tau_1) - j(\tau_2)) \] (0.20)

be the integer of (1.2) of [14]. Then Theorem 1.3 and (1.4) of that paper can be written as
\[2 \log|J(-d, -q)| = \sum_{n^2 \equiv dq \pmod{ad(q)}} a_m(\phi), \] (0.21)

where, in the sum, \(m = (dq - n^2)/4 \). Thus, (0.21) is the \(ad \)-th coefficient of the modular form \(\theta(\tau) \phi(4\tau) \) of weight \(3/2 \), where \(\theta(\tau) = \sum_{n \in \mathbb{Z}} e(n^2 \tau) \).

Although the present paper was initially intended as an illustration of the results of [17] in the simplest case, the final expression of the Fourier expansion of the function \(\phi \) suggests a reformulation of the results of [17] along the same lines. The basic questions are as follows.

(I) Do the nonsingular Fourier coefficients of the central derivative of an incoherent Eisenstein series of weight \((n + 1)/2 \) and genus \(n \), as defined in [17], coincide with the arithmetic degrees of certain cycles on a suitable moduli scheme?

(II) Do the singular coefficients have a similar interpretation in terms of arithmetic/geometric invariants of the moduli space?

The results of [17], [19], and [21] can be reformulated as a positive answer to question (I) in some cases.

Notation

We use the following notation for elements of \(SL(2) \).
\[
\begin{align*}
m(a) &= \begin{pmatrix} a & 0 \\ 0 & a^{-1} \end{pmatrix}, \quad n(b) = \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix}, \quad w = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}, \quad k_\theta = \begin{pmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{pmatrix}
\end{align*}
\]

for \(\theta \in \mathbb{R} \).
Let Q_A be the adeles of Q, and let $\psi : Q_A/Q \to \mathbb{C}^\times$ be the standard nontrivial additive character, as defined in Tate’s thesis.

§ 1 Incoherent Eisenstein series for $SL(2)$

The simplest examples of incoherent Eisenstein series, as considered in [17], occur for the group $SL(2)$. In this section, we sketch their construction.

Let ψ be a nontrivial quadratic character of $Q^\times \backslash Q_A^\times$, and let $k = Q(\sqrt{D})$ be the associated quadratic extension. We assume that $D < 0$ is the discriminant of the extension k/Q, and write O_k for the ring of integers of k.

Let V be a two-dimensional vector space over Q with quadratic form $x \mapsto Q(x)$. Let $\chi_V(x) = (x, -\det V)$ be the quadratic character associated to V, and assume that $\chi_V = \chi$. Then $V \simeq k$ with quadratic form $Q(x) = \kappa \cdot N(x)$, $\kappa \in Q^\times$, given by a multiple of the norm form. Up to isomorphism over Q, the space V is determined by its collection of localizations (V_p), for $p \leq \infty$. These localizations V_p are determined by their Hasse invariants. They have the following form, up to isomorphism.

(i) If $p = \infty$, then V_∞ has signature $(2, 0)$ or $(0, 2)$, and these spaces have Hasse invariants $e_\infty(V_\infty) = 1$ and $e_\infty(V_\infty) = -1$, respectively.

(ii) If p is inert or ramified in k/Q, then $V_p = k_p$ with $Q(x) = N(x)$ or $Q(x) = \kappa_p \cdot N(x)$, where $\chi_p(k_p) = -1$, i.e., with $\kappa_p \notin Nk^\times$. These spaces have Hasse invariants $e_p(V_p) = 1$ and $e_p(V_p) = -1$, respectively.

(iii) If p splits in k, then $V_p = V_{1,1}$, the split binary quadratic space. In this case, the Hasse invariant is $e_p(V_p) = 1$.

If $V = k$ with $Q(x) = \kappa \cdot N(x)$, then $e_p(V_p) = \chi_p(\kappa) = (\kappa, D)_p$. The Hasse invariants satisfy the product formula $\prod_{p \leq \infty} e_p(V_p) = 1$.

An incoherent collection $\mathcal{E} = \{e_p\}$ is a collection of such local quadratic spaces with the following property. For some (and hence for any) global binary quadratic space V with $\chi_V = \chi$, there is a finite set S of places with the following properties: (i) $|S|$ is odd; (ii) for any finite place $p \in S$, p does not split in k; and (iii) for all $p \leq \infty$,

$$e_p = \begin{cases} (V_p, \kappa_p \cdot Q) & \text{if } p \in S, \\
(V_p, Q) & \text{otherwise.} \end{cases}$$

(1.1)

Here κ_p is as in (ii) above, and $\kappa_\infty = -1$. By the definition, $\prod_{p \leq \infty} e_p(\mathcal{E}_p) = -1$, and there is no global binary quadratic space with these localizations.

Let $G = SL(2)$ over Q, and let $B = TN$ be the upper triangular Borel subgroup. Associated to quadratic character χ is the global induced representation

$I(s, \chi) = Ind_{\Delta(\mathbb{A})}^{G(\mathbb{A})}(\chi| \cdot |^s)$
of $G(A)$. Here $\Phi(s) \in I(s, \chi)$ satisfies

$$
\Phi(n(b)m(a) g, s) = \chi(a)|a|^{s+1} \Phi(g, s),
$$

(1.2)

for $b \in A$ and $a \in A^\times$. At $s = 0$, we have a decomposition into irreducible representations of $G(A)$,

$$
I(0, \chi) = (\oplus_V \Pi(V)) \oplus (\oplus_C \Pi(C)).
$$

(1.3)

Here V runs over binary quadratic spaces with $\chi_V = \chi$, and C runs over incoherent collections with $\chi_C = \chi$. Let $S(V(A))$ be the Schwartz space of $V(A)$. Recall that the irreducible subspace $\Pi(V)$ is the image of the map $\lambda_V : S(V(A)) \to I(0, \chi)$ defined by $\lambda_V(\varphi)(g) = (\omega(g)\varphi)(0)$, where $\omega = \omega_\psi$ denotes the action of $G(A)$ on $S(V(A))$ via the global Weil representation determined by the fixed additive character ψ. Analogously, let $S(C_A) = \otimes_{p \leq \infty} S(C_p)$ be the Schwartz space of C (the restricted tensor product of the spaces $S(C_p)$). The group $G(A)$ acts on this space by the restricted product of the local Weil representations, and $\Pi(C)$ is the image of the equivariant map $\lambda_C : S(C_A) \to I(0, \chi)$ defined by

$$
\lambda_C(\otimes_p \varphi_p)(g) = \otimes_p (\omega_p(g)\varphi_p)(0),
$$

(1.4)

where $\omega_p = \omega_{\psi_p}$ denotes the action of $G(Q_p)$ on $S(C_p)$ via the local Weil representation determined by the local component ψ_p of ψ.

For $g \in G(A)$, write $g = n(b)m(a)k$, where $k \in K_\infty K$, $K_\infty = SO(2)$, and $K = SL_2(\hat{Z})$. Here $a \in A^\times$ is not uniquely determined, but the absolute value $|a(g)| := |a|_A$ is well defined. For $\Phi \in I(0, \chi)$, let

$$
\Phi(g, s) = \Phi(g, 0)|a(g)|^s
$$

(1.5)

be its standard extension. For such a standard section $\Phi(s)$, the Eisenstein series

$$
E(g, s, \Phi) = \sum_{\gamma \in B(\mathbb{Q}) \setminus G(\mathbb{Q})} \Phi(\gamma g, s)
$$

(1.6)

converges absolutely for $\text{Re}(s) > 1$ and has an entire analytic continuation.

If $\Phi = \Phi(0) \in \Pi(C)$ for some incoherent collection C, then the resulting incoherent Eisenstein series $E(g, s, \Phi)$ vanishes at $s = 0$ (see [17, Theorem 2.2] and [18, Theorem 3.1]).
In the sections which follow, we compute the central derivative $E'(g, 0, \Phi)$ of such a series in the simplest possible case.

§2 The case of a prime discriminant

Fix a prime $q > 3$ with $q \equiv 3 \mod 4$. Note that, by genus theory, the class number of k is then odd. This allows for considerable simplification. Let $R = \mathcal{O}_k$ be the ring of integers of k. Let χ be the character of \mathbb{Q}^\times associated to k so that $\chi(x) = (x, -q)_k$, where $(,)_k$ is the global Hilbert symbol. For a prime p, let $\chi_p(x) = (x, -q)_p$ for the local Hilbert symbol $(,)_p$ at p.

Let $V = k$, viewed as a \mathbb{Q}-vector space with quadratic form $Q(x) = -N(x)$, and let C be the incoherent collection defined by $C_p = V_p$ for all finite primes p, and let $\text{sig}(C_\infty) = (2, 0)$. We identify C_∞ with k_∞ with quadratic form $N(x)$.

We will consider the incoherent Eisenstein series associated to the standard factorizable section $\Phi(s) \in I(s, \chi)$ with $\Phi(0) = \lambda(\varphi)$ for $\varphi = \otimes_p \varphi_p \in S(C_k)$ and $\lambda = \lambda_C : S(C_k) \to I(0, \chi)$, as above. We choose $\varphi = \otimes_{p < \infty} \varphi_p \in S(C_k)$ as follows. For $p < \infty$, let φ_p be the characteristic function of $R_p = \mathbb{R} \otimes_{\mathbb{Z}} \mathbb{Z}_p$, and let $\varphi_\infty(x) = \exp(-\pi N(x))$.

In the range of absolute convergence, $\text{Re}(s) > 1$, the incoherent Eisenstein series determined by $\Phi(s)$ has a Fourier expansion

$$E(g, s, \Phi) = \sum_{t \in \mathbb{Q}} E_t(g, s, \Phi),$$

with

$$E_t(g, s, \Phi) = \int_{Q \backslash A} E(n(b)g, s, \Phi) \psi(-tb) \, db.$$

A calculation similar to but simpler than that given at the end of Section 7 of [13] yields the expression given in (0.7) and (0.8) for $\nu^{-(1/2)} E(g_\tau, s, \Phi)$, where, for $\tau = u + iv$,

$$g_\tau = \begin{pmatrix} 1 & u \\ -iv & 1 \end{pmatrix} \begin{pmatrix} \nu^{1/2} \\ -\nu^{-(1/2)} \end{pmatrix} \in G(\mathbb{R}).$$

For $t \neq 0$,

$$E_t(g, s, \Phi) = \prod_{p \leq \infty} W_{t,p}(g_p, s, \Phi_p),$$

with
where

\[W_{t,p}(g_p, s, \Phi_p) = \int_{Q_p} \Phi_p(\nu \eta(b)g_p, s) \psi_p(-tb) \, db \] (2.4)

is the local Whittaker integral. Here \(db \) is the self-dual measure with respect to \(\psi_p \).

Similarly,

\[E_0(g, s, \Phi) = \Phi(g, s) + M(s)\Phi(g), \] (2.5)

where the global intertwining operator has a factorization

\[M(s)\Phi = \otimes_p M_p(s)\Phi_p, \] (2.6)

and

\[M_p(s)\Phi = W^*_0(g, s, \Phi). \] (2.7)

To obtain an explicit formula for our particular choice of \(\varphi \in S(C_A) \), it is first necessary to determine the section \(\Phi(s) = \otimes_p \Phi_p(s) \) defined by \(\varphi \) and then to compute the integrals \(W_{t,p}(g_p, s, \Phi_p) \). For \(p \neq q \), these are completely standard matters, and we spare the reader the details of the computations and just summarize the results. Also, in the end, we assume that, for \(\tau = u + iv \) in the upper half plane, \(g = g_\tau = n(u)m(v^{1/2}) \in G(\mathbb{R}) \), so that we may as well assume that \(g_p = 1 \) for all finite places. Since our section \(\Phi(s) \) has been fixed, we omit it from the notation and simply write

\[W^*_p(s) = L_p(s + 1, \chi)W_{1,p}(e, s, \Phi_p), \] (2.7)

for \(p \) a finite prime, and

\[W^*_{1,\infty}(\tau, s) = L_\infty(s + 1, \chi)W_{1,\infty}(g_\tau, s, \Phi_\infty). \] (2.8)

Lemma 2.1. (i) For \(p \neq q, \infty \), the function \(\varphi_p \) is invariant under \(K_p = SL_2(\mathbb{Z}_p) \), and so \(\Phi_p(s) \) is the unique \(K_p \)-invariant vector in \(I_p(s, \chi) \) with \(\Phi_p(e, s) = 1 \).

(ii) For \(p = \infty \), and for \(k_0 \in SO(2) = K_\infty \), \(\omega(k_0)\varphi_\infty = e^{i\theta} \cdot \varphi_\infty \). Thus, \(\Phi_\infty(s) \) is the unique weight 1 eigenvector for \(K_\infty \) in \(I_\infty(s, \chi_\infty) \) with \(\Phi_\infty(e, s) = 1 \). \(\square \)

For \(p = q \), let \(I_q \subset K_q = SL_2(\mathbb{Z}_q) \) be the Iwahori subgroup. The ramified character \(\chi_q, \chi_q(t) = (t, -q)_q \) defines a character of \(I_q \) by

\[\chi_q \left(\begin{pmatrix} a & b \\ qc & d \end{pmatrix} \right) = \chi_q(a). \] (2.9)
Recall that \(K_q = J_q \cup (J_q \cap N) \backslash J_q \). Thus, the subspace of \(I_q(s, \chi) \) consisting of \(\chi_q \)-eigenvectors of \(J_q \) is two-dimensional, and it is spanned by the cell functions \(\Phi_q^0(s) \) and \(\Phi_q^1(s) \), determined by

\[
\Phi^i_q(w_j, s) = \delta_{ij}, \quad \text{where } w_0 = 1 \text{ and } w_1 = w. \tag{2.10}
\]

By a direct calculation, given in Section 3, we find the following lemma.

Lemma 2.2. For \(k = \begin{pmatrix} a & b \\ qc & d \end{pmatrix} \in J_q \), \(\omega(k) \varphi_q = \chi_q(a) \varphi_q \), so that \(\Phi_q(s) \) lies in the two-dimensional subspace of \(I_q(s, \chi) \) consisting of \(\chi_q \) eigenvectors of \(J_q \). Explicitly, \(\Phi_q(s) = \Phi_q^0(s) + c_q \cdot \Phi_q^1(s) \), where \(c_q = \sqrt{-q} \cdot q^{-1/2} \).

It follows that our section \(\Phi(s) \) is a \(\chi \)-eigenvector under the action of the group \(J = J_q \prod_{p \neq q} K_p \), and hence that the Eisenstein series \(E(g, s, \Phi) \) is right \(\chi \)-equivariant under \(J \).

Lemma 2.3. If \(g \in G(\mathbb{R}) \), then \(E_t(g, s, \Phi) = 0 \) for \(t \notin \mathbb{Z} \).

Proof. For \(t \in \mathbb{Q} - \mathbb{Z} \), take \(b \in \hat{\mathbb{Z}} \) so that \(\psi(tb) \neq 1 \). Then, since \(n(b) \in J \) with \(\chi(n(b)) = 1 \), we have

\[
E_t(g, s, \Phi) = E_t(gn(b), s, \Phi) = E_t(n(b)g, s, \Phi) = \psi(tb) \cdot E_t(g, s, \Phi), \tag{2.11}
\]

and hence \(E_t(g, s, \Phi) = 0 \).

From now on, we will assume that \(t \) is integral. Next, we compute the normalized local Whittaker functions \(W^*_{t,p}(s) \), \(W^*_{t,\infty}(\tau, s) \), and their derivatives.

Lemma 2.4. For a finite prime \(p \neq q \), let \(X = p^{-s} \). Then

\[
W^*_{t,p}(s) = \sum_{r=0}^{\text{ord}_p(t)} (\chi_p(pX)^r).
\]

Here \(\chi_p(p) = (p, -q)_p \) is 1 if \(p \) is split in \(k \), and \(-1 \) if \(p \) is inert. If \(t = 0 \), so that \(\text{ord}_p(t) = \infty \), then

\[
W^*_{0,p}(s) = (1 - \chi(pX))^{-1},
\]

and hence

\[
M^*_{p}(s)\Phi^0_p = L_p(s, \chi) \Phi^0_p(-s). \tag*{\square}
\]
Here
\[M_p^*(s) = L_p(s + 1, \chi) M_p(s). \]
(2.12)

Let
\[\rho_p(t) = \rho(p^{\operatorname{ord}_p(t)}), \]
(2.13)

so that, for \(t > 0 \),
\[\rho(t) = \prod_p \rho_p(t). \]
(2.14)

Note that \(\rho(t) = 0 \) for \(t < 0 \).

The following facts, which are an immediate consequence of Lemma 2.4, are useful below.

Lemma 2.5. At \(s = 0 \),
\[W_{t,p}^*(0) = \rho_p(t). \]

If \(\chi_p(p) = -1 \) and \(\operatorname{ord}_p(t) \) is odd, i.e., if \(\rho_p(t) = 0 \), then
\[W_{t,p}^*(0) = \log(p) \frac{1}{2} (\operatorname{ord}_p(t) + 1) \rho_p(t/p). \]

Note that \(\rho_p(t/p) = 1 \) here.

Next, consider the archimedean factor. In Section 3, we indicate the proof of the following result.

Proposition 2.6. For \(\tau = u + iv \) in the upper half plane, and \(g_\tau = n(u)m(v^{1/2}) \), as above,
\[W_{t,\infty}^*(\tau, s) = v^{(1-s)/2} e^{2\pi tu} \frac{2i\tau^{s/2} e^{2\pi tv}}{\Gamma(s/2)} \int_{u>0} e^{-2\pi u} u^{s/2} (u - 2tv)^{s/2 - 1} du. \]

For \(t \neq 0 \), it extends to an entire function of \(s \).
(i) If \(t > 0 \), then \(W_{t,\infty}^*(\tau, 0) = 2i v^{1/2} e(t\tau) \).
(ii) If \(t = 0 \), then
\[W_{0,\infty}^*(\tau, s) = (M_\infty^*(s) \Phi_\infty) (g_\tau) = i v^{(1-s)/2} \pi^{-(s+1)/2} \Gamma \left(\frac{s + 1}{2} \right), \]
and \(W_{0,\infty}^*(\tau, 0) = iv^{1/2} \).
(iii) If \(t < 0 \), then \(W_{t,\infty}^*(\tau, 0) = 0 \), and
\[W_{t,\infty}^*(g_\tau, 0, \Phi_\infty^1) = i v^{1/2} e(t\tau) \cdot \beta_1(4\pi|t|v), \]
where \(\beta_1 \) is given by (0.11).
The above formula for $W^*_t,\infty(\tau, s)$ can be found in Siegel [25, eq. (14), p. 88].

Finally, in the case where $p = q$, and noting that $L_q(s+1, \chi) = 1$, a direct calculation given in Section 3 below yields the following proposition.

Proposition 2.7. For $p = q$, let $c_q = \sqrt{-1}q^{-1/2}$, as in Lemma 2.2 above. Then

$$W^*_t,q(s) = (1 - \chi_q(t)q^{-s(\text{ord}_q(t)+1)}) \cdot c_q.$$

If $\chi_q(t) = -1$, then $W^*_t,q(0) = 2c_q \cdot \rho_q(t)$. If $\chi_q(t) = 1$, then $W^*_t,q(0) = 0$, and

$$W^*_t,q(0) = c_q \log(q)(\text{ord}_q(t) + 1) \rho_q(t).$$

Note that the factor $\rho_q(t) = 1$.

Allowing $\text{ord}_q(t)$ to go to infinity in $W^*_t,q(s)$ gives $W^*_0,q(s) = c_q$, and hence

$$M^*_q(s)\Phi_q = c_q \cdot \Phi_q(-s).$$

(2.15)

We can now assemble these facts. For $t \neq 0$, and for $\text{Re}(s) > 1$, we have

$$E^*_t(g, s, \Phi) = q^{(s+1)/2} \cdot W^*_{t,\infty}(\tau, s) \cdot W^*_t,q(s) \cdot \prod_{p \neq q} W^*_t,p(s).$$

(2.16)

Since the factors in the product for p with $\text{ord}_p(t) = 0$ are equal to 1, the expressions given in Lemmas 2.4, 2.6, and 2.7 provide the entire analytic continuation of the right-hand side of (2.16). At $s = 0$, the factors on the right-hand side vanish as follows:

(i) $W^*_{t,\infty}(\tau, 0) = 0$ if $t < 0$, i.e., if $\chi_\infty(t) = -1$;
(ii) $W^*_t,q(0) = 0$ if $\chi_q(t) = 1$; and
(iii) $W^*_t,p(0) = 0$ if $\chi_p(t) = -1$ for $p \neq q, \infty$.

Note that case (iii) occurs only when p is inert in k and $\text{ord}_p(t)$ is odd.

Since

$$\chi_\infty(t)\chi_\infty(t)\prod_{p \neq q}\chi_p(t) = \chi(t) = 1,$$

(2.17)

an odd number of factors in (2.16) are forced to vanish at $s = 0$ via (i)-(iii). Precisely one factor will vanish when one of the quantities $\rho(-t)$, $\rho(t)$, or $\rho(t/p)$ is nonzero. Specifically, this factor will be:

(i) $W^*_{t,\infty}(\tau, 0)$ when $\rho(-t) \neq 0$, i.e., when $\chi_\infty(t) = -1$, $\chi_q(t) = -1$, and $\chi_p(t) = 1$ for $p \neq q, \infty$;
(ii) $W_{t,q}^+(0)$ when $\rho(t) \neq 0$, i.e., when $\chi_{\infty}(t) = 1$, $\chi_q(t) = 1$, and $\chi_p(t) = 1$ for $p \neq q$, ∞; and

(iii) $W_{t,p}(0)$ when $\rho(t/p) \neq 0$, i.e., when $\chi_{\infty}(t) = 1$, $\chi_q(t) = -1$, $\chi_p(t) = -1$ and $\chi_t(t) = 1$ for $t \neq p$, q, ∞.

These are the only cases which contribute to the derivative at $s = 0$. The corresponding nonzero Fourier coefficients of $E^+(g_t, 0, \Phi)$ can then be obtained by combining the values of normalized local Whittaker functions and their derivatives described in the lemmas above.

Proposition 2.8. (i) If $\rho(-t) \neq 0$, then

$$E_1^+(g_t, 0, \Phi) = -2v^{1/2} e(t\tau) \cdot \beta_1(4\pi|v|) \cdot \rho(-t).$$

(ii) If $\rho(t) \neq 0$, then

$$E_1^+(g_t, 0, \Phi) = -2v^{1/2} e(t\tau) \cdot \log(q) \cdot (\text{ord}_q(t) + 1) \cdot \rho(t).$$

(iii) If $\rho(t/p) \neq 0$, then

$$E_1^+(g_t, 0, \Phi) = -2v^{1/2} e(t\tau) \cdot \log(p) \cdot (\text{ord}_p(t) + 1) \cdot \rho(t/p).$$

Since the classical Eisenstein series of the introduction is

$$E^*(\tau, s) = v^{-1/2} E^+(g_t, s, \Phi),$$

we obtain the expressions of Theorem 1 for the nonconstant Fourier coefficients of Φ.

Finally, we compute the constant term and its derivative:

$$E_0^+(g_t, s, \Phi) = q^{(s+1)/2} \Lambda(s + 1, \chi_q) \cdot \Phi(g_t, s) + q^{(s+1)/2} M^+(s) \Phi(g_t)$$

$$= q^{(s+1)/2} \Lambda(s + 1, \chi_q) \cdot v^{(s+1)/2} + q^{(s+1)/2} \cdot i \cdot c_q \cdot \Lambda(s, \chi_q) \cdot v^{(1-s)/2}$$

$$= q^{(s+1)/2} \Lambda(s + 1, \chi_q) \cdot v^{(s+1)/2} - q^{(1-s)/2} \Lambda(1 - s, \chi_q) \cdot v^{(1-s)/2}. \tag{2.19}$$

Thus,

$$E_0^+(g_t, 0, \Phi) = 2 \frac{\partial}{\partial s} \left. \left\{ q^{(s+1)/2} \Lambda(s + 1, \chi_q) \cdot v^{(s+1)/2} \right\} \right|_{s=0}$$

$$= v^{1/2} \cdot h_k \cdot \left(\log(q) + \log(v) + 2 \frac{\Lambda(1, \chi_q)}{\Lambda(1, \chi_q)} \right). \tag{2.20}$$

This gives the constant term of Φ and finishes the proof of Theorem 1.
§3 Some computations

In this section, we provide the details for the computations of the values and derivatives of the Whittaker functions used in Section 2, in the case where \(p = q \) or \(\infty \). We begin with the case where \(p = q \).

Proof of Lemma 2.2. We compute the action of \(\text{SL}_2(\mathbb{Z}_q) \) on \(S(V(\mathbb{Q}_q)) \) for the Weil representation. Write \(J_q = (I_q \cap N_q)(I_q \cap M_q)(I_q \cap N_q) \). For \(b \in \mathbb{Z}_q \),

\[
\omega(n(b))\varphi_q(x) = \psi_q(-bN(x))\varphi_q(x) = \varphi_q(x),
\]

(3.1)
since \(x \in \mathbb{R}_q \) implies that \(N(x) \in \mathbb{Z}_q \), and \(\psi_q \) is unramified. Similarly, for \(a \in \mathbb{Z}_q^\times \),

\[
\omega(m(a))\varphi_q(x) = \chi_q(a)|a|\varphi_q(xa) = \chi_q(a)\varphi_q(x).
\]

(3.2)

Finally, note that \(n_-(qc) = \begin{pmatrix} 1 & \sqrt{q} \\ 0 & 1 \end{pmatrix} = wn(-qc)w^{-1} \). Then

\[
\omega(w^{-1})\varphi_q(x) = -i\int_{V_q} \varphi_q(y)\psi_q(-\text{tr}(xy^\sigma)) dy
\]

\[
= -i\int_{\mathbb{R}_q} \psi_q(-\text{tr}(xy^\sigma)) dy
\]

\[
= -i \text{meas}(\mathbb{R}_q)\hat{\varphi}_q(x),
\]

(3.3)

where \(\hat{\varphi}_q \) is the characteristic function of the dual lattice \(\hat{\mathbb{R}}_q = (1/\sqrt{q})\mathbb{R}_q \). Then

\[
\omega(n(-qc)w(w^{-1})\varphi_q(x) = -i \text{meas}(\mathbb{R}_q)\psi_q(qcN(x))\hat{\varphi}_q(x),
\]

(3.4)

and so

\[
\omega(n_-(qc))\varphi_q(x) = \text{meas}(\mathbb{R}_q)\int_{V_q} \psi_q(qcN(y))\psi_q(\text{tr}(xy^\sigma))\hat{\varphi}_q(y) dy
\]

\[
= \text{meas}(\mathbb{R}_q)\int_{\hat{\mathbb{R}}_q} \psi_q(qcN(y))\psi_q(\text{tr}(xy^\sigma)) dy
\]

\[
= \text{meas}(\mathbb{R}_q)\text{meas}(\hat{\mathbb{R}}_q)\varphi_q(x).
\]

(3.5)

Here \(\text{meas}(\mathbb{R}_q) \) and \(\text{meas}(\hat{\mathbb{R}}_q) = 1 \), since the measure \(dy \) is self-dual with respect to \(\psi_q \). The second statement is clear, since

\[
\lambda_q(\varphi_q) = \lambda_q(\varphi_q)(w_0)\Phi^0_q(0) + \lambda_q(\varphi_q)(w_1)\Phi^1_q(0),
\]

(3.6)
so that
\[c_q = \lambda(q)\omega(w) = \omega(w)\phi_q(0) = i \int_{V_q} \phi_q(y) \, dy = i \text{meas}(R_q) = i \, q^{-1/2}. \] (3.7)

\[\square \]

Proof of Proposition 2.7. Recall that \(W_{t,q}^*(s) = W_{t,q}(e, s, \Phi_q) \), where, for \(\text{Re}(s) > 1 \), the Whittaker integral \(W_{t,q}(g, s, \Phi_q) \) is as in (2.4). We actually determine this function completely. It is easy to check that
\[W_{t,q}(n(b)m(a)g, s, \Phi) = \chi_q(a)|a|^{-s+1}\psi_q(tb)W_{q2t,q}(g, s, \Phi), \] (3.8)
so that, by Lemma 2.2 and the decomposition
\[G(Q_q) = N_qM_qw_0I_q \cup N_qM_qw_1I_q, \] (3.9)
it suffices to compute the functions
\[W_{ij}(s, t) := W_{t,q}(n_i, s, \Phi_q^i) = \int_{Q_q} \Phi_q^i(n(b)n_i, s)\psi_q(-tb) \, db, \] (3.10)
for \(i, j \in \{0, 1\} \), and the cell functions \(\Phi_q^i \) as in (2.10). Let
\[W_{ij}(s, t)^{(0)} = \int_{Z_q} \Phi_q^i(n(b)n_i, s)\psi_q(-tb) \, db, \] (3.11)
and let
\[W_{ij}(s, t)^{(1)} = \int_{Q_q-Z_q} \Phi_q^i(n(b)n_i, s)\psi_q(-tb) \, db. \] (3.12)

For \(b \in Z_q, n(b)n_i \in K_q \), so the integrand in \(W_{ij}(s, t)^{(0)} \) is independent of \(s \). Then
\[W_{0j}(s, t)^{(0)} = \int_{Z_q} \Phi_q^i(n(b), s)\psi_q(-tb) \, db \]
\[= \Phi_q^i(w, s)\int_{Z_q} \psi_q(-tb) \, db \]
\[= \delta_{1j} \text{char}(Z_q)(t), \] (3.13)
where \(\text{char}(Z_q) \) is the characteristic function of \(Z_q \). Next,
\[W_{1j}(s, t)^{(0)} = \int_{Z_q} \Phi_q^i(-wn(b)n^{-1}, s)\psi_q(-tb) \, db. \] (3.14)
Since \(wn(qx)q^{-1} \in J_q\), the function \(b \mapsto \Phi_j^q(-wn(b)q^{-1}, s)\) depends only on \(b\) modulo \(q\mathbb{Z}_q\), and thus the integral vanishes if \(t \not\equiv q^{-1}\mathbb{Z}_q\). If \(t \equiv q^{-1}\mathbb{Z}_q\), then

\[
W_{1j}(s, t)^{(0)} = q^{-1} \chi_q(-1) \sum_{b \in \mathbb{Z}/q\mathbb{Z}} \Phi_j^q(n_-(b)) \psi_q(-tb).
\]

(3.15)

Note that \(n_-(b) \in J_q\) if and only if \(b \equiv q\mathbb{Z}_q\). If \(b \in \mathbb{Z}_q\), then write

\[
n_-(b) = n(x)wk = n(x)w \begin{pmatrix} A & B \\ qC & D \end{pmatrix}.
\]

(3.16)

This yields

\[
(0, 1)n_-(b) = (-b, 1) = (-1, 0)k = (-A, -B),
\]

(3.17)

and thus \(A = b\) and \(B = -1\). Hence

\[
\Phi_j^q(n_-(b)) = \chi_q(b) \cdot \delta_1j,
\]

(3.18)

and

\[
W_{1j}(s, t)^{(0)} = q^{-1} \chi_q(-1) \left(\delta_{0j} + \delta_{1j} \sum_{b \in \mathbb{Z}/q\mathbb{Z}^\times} \chi_q(b) \psi_q(-tb) \right)
\]

\[
= \begin{cases}
q^{-1} \chi_q(-1) \delta_{0j} & \text{if } \text{ord}_q(t) \geq 0, \\
q^{-1} \chi_q(-1) (\delta_{0j} + \delta_{1j} \chi_q(t) g(\chi_q)) & \text{if } \text{ord}_q(t) = -1, \\
0 & \text{otherwise}.
\end{cases}
\]

(3.19)

Here

\[
g(\chi_q) = \sum_{b \in \mathbb{Z}/q\mathbb{Z}^\times} \chi_q(b) \psi(-b/q)
\]

(3.20)

is the Gauss sum for \(\chi_q\). We note that \(\chi_q(q) = (q, -q)_q = 1\) and \(\chi_q(b) = (b/q)\) for \(b \in \mathbb{Z}/q\mathbb{Z}^\times\), so that \(\chi_q(-1) = -1\).

Next, we consider \(W_{ij}(s, t)^{(1)}\). Here, for \(\text{ord}_q(b) < 0\),

\[
wn(b) = \begin{pmatrix} 1 & 1 \\ -1 & -b \end{pmatrix} = \begin{pmatrix} 1 & -b^{-1} \\ -b^{-1} & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & b^{-1} \end{pmatrix}.
\]

(3.21)
Thus,

\[\Phi_{ij}^q(w_n(b)w_i, s) = \chi_q(-b)|b|^{-s-1}\delta_{ij}, \quad (3.22) \]

since \(n_-(b^{-1})w_i = w_i w_i^{-1} n_-(b^{-1})w_i \) and

\[w_i^{-1} n_-(b^{-1})w_i \in (I_q \cap N_\omega) \cup (I_q \cap N) \quad (3.23) \]

for either \(i \). Therefore, recalling that \(\chi_q(q) = 1 \),

\[W_{ij}(s, t) = \chi_q(-1)\delta_{ij} \sum_{r=1}^{\infty} q^{-rs} \int_{Z_q} \chi_q(b) \psi_q(-tb/q^r) \, db \]

\[= \begin{cases}
\chi_q(-1)\delta_{ij} q^{-1} \chi_q(t) \chi_q(q) & \text{if } \text{ord}_q(t) \geq 0, \\
0 & \text{otherwise}.
\end{cases} \quad (3.24) \]

Here we use the fact that

\[\int_{Z_q} \chi_q(b) \psi_q(-tb/q^r) \, db = \begin{cases}
0 & \text{if } r \neq \text{ord}_q(t) + 1, \\
q^{-1} \chi_q(t) \chi_q(q) & \text{if } r = \text{ord}_q(t) + 1.
\end{cases} \quad (3.25) \]

These results can be summarized as follows: If \(\text{ord}_q(t) \geq 0 \), then, writing \(r = \text{ord}_q(t) + 1 \),

\[(W_{ij}(s, t)) = q^{-1} \chi_q(-1) \begin{pmatrix} q^{-st} \chi_q(t) \chi_q(q) & q \chi_q(-1) \\
1 & q^{-st} \chi_q(t) \chi_q(q) \end{pmatrix}. \quad (3.26) \]

If \(\text{ord}_q(t) = -1 \), then

\[(W_{ij}(s, t)) = q^{-1} \chi_q(-1) \begin{pmatrix} 0 & 0 \\
1 & \chi_q(t) \chi_q(q) \end{pmatrix}. \quad (3.27) \]

Otherwise, \((W_{ij}(s, t)) = 0 \).

Finally, recall that \(\Phi_q(s) = \Phi^0_q(s) + c_q \Phi^1_q(s) \), with \(c_q = \sqrt{-1} q^{-1/2} \), and that \(\chi_q(q) = \sqrt{-1} q^{1/2} \). Thus, if \(\text{ord}_q(t) \geq 0 \), then

\[\left(\begin{array}{c} W_{i, q}(w_0, s, \Phi_q) \\
W_{t, q}(w_2, s, \Phi_q) \end{array} \right) = (W_{ij}(s, t)) \cdot \begin{pmatrix} 1 \\
c_q \end{pmatrix} \]

\[= (1 - \chi_q(t)q^{-\text{ord}_q(t)}q) \begin{pmatrix} c_q \\
- q^{-1} \end{pmatrix}. \quad (3.28) \]
If \(\text{ord}_q(t) = -1 \), then
\[
\begin{pmatrix}
W_{t,q}(w_0, s, \Phi_q) \\
W_{t,q}(w_1, s, \Phi_q)
\end{pmatrix}
= (1 - \chi_q(t)) \begin{pmatrix}
0 \\
-1
\end{pmatrix}.
\] (3.29)

This completes the proof of Proposition 2.7, and a little more. \(\blacksquare \)

We next turn to the case where \(p = \infty \). Of course, these calculations are rather well known, but we include them for convenience.

Proof of Proposition 2.6. Recall that, by (2.8),
\[
W_{t,\infty}^\ast (\tau, s) = v^{(1/2)(1-s)} e(tu) W_{tv, \infty}^\ast (e, s)
= v^{(1/2)(1-s)} e(tu) L_\infty(s + 1, \chi) W(s, tv),
\] (3.30)

where
\[
L_\infty(s + 1, \chi) = \pi^{-s/2-1} \Gamma\left(\frac{s}{2} + 1\right),
\] (3.31)
as in (0.4), and where we set
\[
W(s, t) := W_{t,\infty}(e, s, \Phi_\infty).
\] (3.32)

A simple computation of the Iwasawa decomposition of \(w_n(b) \) yields
\[
\Phi_1^\infty(w_n(b), s) = i \cdot \frac{(1 + ib)}{(1 + b^2)^{1/2}}.
\] (3.33)
Thus,
\[
W(s, t) = i \cdot \int_{-\infty}^{\infty} (1 + ib)^{-s/2} (1 - ib)^{-s/2-1} e(-tb) db
= \frac{\pi^{s/2+1}}{\Gamma(s/2 + 1)} \int_{-\infty}^{\infty} (1 + ib)^{-s/2} \int_0^\infty e^{-\pi(1-ib)u} u^{s/2} du e(-tb) db.
\] (3.34)

Recall that
\[
\int_0^\infty e(-xv) e^{-x^2} x^{s-1} dx = (z + 2\pi i v)^{-s} \Gamma(s),
\] (3.35)
and hence
\[
\int_{-\infty}^{\infty} e(vx)(z + 2\pi iv)^{-s} dv = \begin{cases}
\frac{1}{i z}, & \text{if } x > 0, \\
0, & \text{if } x \leq 0.
\end{cases}
\] (3.36)
Thus,
\[
\int_{-\infty}^{\infty} (1 + i b)^{-s/2} e \left(b \left(\frac{1}{2} u - t \right) \right) \, db \\
= \begin{cases}
\frac{(2\pi)^{s/2}}{\Gamma(s/2)} e^{-2\pi(1/2)u-t} \left(\frac{1}{2} u - t \right)^{s/2-1} & \text{if } \frac{1}{2} u - t > 0, \\
0 & \text{if } \frac{1}{2} u - t \leq 0.
\end{cases}
\]
(3.37)

This gives
\[
W(s, t) = i \pi^{s/2+1} \frac{(2\pi)^{s/2}}{\Gamma(s/2)} \int_{u=0}^{u=2t} e^{-nu} u^{s/2} e^{-2\pi(1/2)u-t} \left(\frac{1}{2} u - t \right)^{s/2-1} \, du \\
= 2i \pi^{s+1} e^{-2nt} \frac{2^{-s} \Gamma(s)}{\Gamma(s/2) \Gamma(s/2 + 1)} \int_{u=0}^{u=2t} e^{-2nu} u^{s/2} (u - 2t)^{s/2-1} \, du.
\]
(3.38)

This yields the first statement of Proposition 2.6.

We are interested in the behavior at \(s = 0 \). If \(t > 0 \), then the substitution of \(u + 2t \) for \(u \) yields
\[
W(s, t) = 2i \pi^{s+1} e^{-2nt} \frac{2^{-s} \Gamma(s)}{\Gamma(s/2) \Gamma(s/2 + 1)} \int_{u=0}^{u=2t} e^{-2nu} (u + 2t)^{s/2-1} \, du \\
= 2i \pi^{s+1} e^{-2nt} \frac{2^{-s} \Gamma(s)}{\Gamma(s/2) \Gamma(s/2 + 1)} \left(\Gamma(s/2)(2\pi)^{-s/2}(2t)^{s/2} + O(s) \right).
\]
(3.39)

Thus, if \(t > 0 \), then \(W(0, t) = 2\pi i \cdot e^{-2nt} \).

If \(t = 0 \), then we get
\[
W(s, 0) = 2i \pi^{s+1} e^{-2nt} \frac{2^{-s} \Gamma(s)}{\Gamma(s/2) \Gamma(s/2 + 1)} \int_{u=0}^{u=2t} e^{-2nu} u^{s/2-1} \, du \\
= 2\pi i \pi^{s+1} \frac{2^{-s} \Gamma(s)}{\Gamma(s/2) \Gamma(s/2 + 1)} \left(\Gamma(s/2)(2\pi)^{-s/2}(2t)^{s/2} + O(s) \right) \\
= i\pi^{1/2} \frac{\Gamma(s+1)}{\Gamma(s/2 + 1)}
\]
(3.40)

via duplication.

Finally, when \(t < 0 \),
\[
W(s, t) = 2i \pi^{s+1} e^{2nt} \frac{2^{-s} \Gamma(s)}{\Gamma(s/2) \Gamma(s/2 + 1)} \int_{u=0}^{u=2t} e^{-2nu} (u - 2|t|)^{s/2-1} \, du.
\]
(3.41)

The integral here converges for \(\text{Re}(s) > -2 \), so that the \(\Gamma(s/2) \) in the denominator yields \(W(0, t) = 0 \) when \(t < 0 \). Note that
\[
\int_{0}^{\infty} e^{-2nu} (u + 2|t|)^{-1} \, du = \int_{0}^{\infty} e^{-4n|t|u} (2|t|u + 2|t|)^{-1} \, du
\]
\[\frac{\partial}{\partial s} (W(s, t)) \bigg|_{s=0} = -2\pi i \cdot \frac{1}{2} \cdot e^{2\pi t} \cdot e^{4\pi |t|} \cdot \text{Ei}(-4\pi |t|) \]

Therefore

\[\frac{\partial}{\partial s} (W(s, t)) \bigg|_{s=0} = -\pi \cdot e^{2\pi |t|} \cdot \text{Ei}(-4\pi |t|),\]

when \(t < 0\). This completes the proof of Proposition 2.6. \[\blacksquare\]

§4 The Mellin transform

In this section, we compute the Mellin transform \(\Lambda(s, \phi)\).

Lemma 4.1. The Mellin transform (0.7) can be computed termwise. \[\square\]

Proof. It suffices to check the termwise absolute convergence of the expression

\[-\int_0^\infty \sum_{t=1}^\infty \rho(t) \cdot \text{Ei}(-4\pi tv) e^{2\pi tv} v^{s-1} dv.\]

(4.1)

It turns out to be more convenient to consider the expression

\[-\sum_{t=1}^\infty \rho(t) \int_0^\infty \text{Ei}(-4\pi tv) e^{2\pi tv} v^{s-1} dv,\]

(4.2)

with \(\sigma > 1\). First, by a change of variable in each integral, we obtain

\[-\sum_{t=1}^\infty \rho(t)(2\pi t)^{-\sigma} \int_0^\infty \text{Ei}(-2v) e^v v^{\sigma-1} dv\]

\[= -\left(\sum_{t=1}^\infty \rho(t)(2\pi t)^{-\sigma}\right) \cdot \int_0^\infty \text{Ei}(-2v) e^v v^{\sigma-1} dv\]

\[= -(2\pi)^{-\sigma} \zeta_k(\sigma) \cdot \int_0^\infty \text{Ei}(-2v) e^v v^{\sigma-1} dv.\]

(4.3)

Thus, it suffices to prove that the integral is convergent when \(\sigma > 1\). Note that the expression

\[-\text{Ei}(-2v) = \int_1^\infty \frac{e^{-2vu}}{u} du\]

(4.4)
is positive. If \(v > \delta > 0 \), and if \(0 < \epsilon < 1 \), then we can write

\[
-Ei(-2v)e^v < \int_1^\infty \frac{e^{-(1-\epsilon)u}}{u} \, du \, e^{-uv} < \int_1^\infty \frac{e^{-\epsilon u}}{u} \, du \, e^{-uv} = C_{\delta,\epsilon} \cdot e^{-uv}.
\]

(4.5)

On the other hand, if \(0 < v < \delta \), then we have

\[
-Ei(-2v)e^v < e^\delta \int_1^\infty \frac{e^{-2uv}}{u} \, du < e^\delta \int_1^\infty \frac{e^{-2uv}}{u} \, du = e^\delta (2v)^{-1}.
\]

(4.6)

Returning to the integral,

\[
-\int_0^\infty Ei(-2v)e^v \, v^{\sigma-1} \, dv < \int_0^\delta e^\delta (2v)^{-1} v^{\sigma-1} \, dv + \int_\delta^\infty C_{\delta,\epsilon} \cdot e^{-uv} v^{\sigma-1} \, dv.
\]

(4.7)

The second integral on the right-hand side converges for all \(\sigma \), while the first is convergent for \(\text{Re}(s) > 1 \), as required.

Computing (0.12) termwise, the contribution of the holomorphic terms is simply

\[
2(2\pi)^{-s} \Gamma(s) \sum_{t=1}^{\infty} \left[\log(q) \, \left(\text{ord}_q(t) + 1 \right) \, \rho(t) + \sum_{p \neq q, \infty} \log(p) \, \left(\text{ord}_p(t) + 1 \right) \, \rho(t/p) \right] t^{-s},
\]

(4.8)

where the sum on \(p \) is over primes inert in \(k \). If \(p \) is such a prime, then \(\rho(p^r) = 1 \) if \(r \) is even and equals 0 if \(r \) is odd, and we have

\[
\sum_{t=1}^{\infty} \left(\text{ord}_p(t) + 1 \right) \, \rho(t/p) \, t^{-s} = \sum_{t=1}^{\infty} \sum_{(t,p)=1}^{\infty} \left(r + 1 \right) \rho(p^{r-1}t) \, p^{-rs} t^{-s}
\]

\[
= \left(\sum_{t=1}^{\infty} \rho(t) t^{-s} \right) \left(\sum_{r=0}^{\infty} \left(r + 1 \right) \rho(p^{r-1}p^{-rs}) \right)
\]

\[
= (1 - p^{-2s}) \cdot \zeta_k(s) \cdot \left(\sum_{r=0}^{\infty} (2r+2) \rho(p^{-(2r+1)}) \right)
\]

\[
= \frac{2p^{-s}}{1 - p^{-2s}} \cdot \zeta_k(s).
\]

(4.9)
Similarly,
\[
\sum_{t=1}^{\infty} (\text{ord}_q(t) + 1) \rho(t) t^{-s} = (1 - q^{-s})^{-1} \cdot \zeta_k(s).
\]
(4.10)

Thus, the holomorphic part of the Fourier expansion contributes
\[
\Lambda_k(s) \left[\frac{1}{1 - q^{-s}} \log(q) + \sum_{p \neq q} \frac{2p^{-s}}{1 - p^{-2s}} \log(p) \right] = \Lambda_k(s) \left[\log(q) + \frac{L'(s, \chi)}{L(s, \chi)} - \frac{\zeta'(s)}{\zeta(s)} \right].
\]
(4.11)
as one easily checks.

The termwise transform of the nonholomorphic part of the Fourier expansion is
\[
2 \sum_{t=1}^{\infty} \rho(t) \int_0^\infty \beta_1(4\pi tv) e^{2\pi tv} v^{s-1} dv
\]
\[
= 2(2\pi)^{-s} \sum_{t=1}^{\infty} \rho(t) t^{-s} \left(\int_0^\infty \beta_1(2v) e^v v^{s-1} dv \right)
\]
\[
= 2(2\pi)^{-s} \zeta_k(s) \Gamma(s) \left[\frac{\Gamma \left(\frac{s+1}{2} \right)'}{\Gamma \left(\frac{s+1}{2} \right)} - \frac{\Gamma \left(\frac{s}{2} \right)'}{\Gamma \left(\frac{s}{2} \right)} \right].
\]
(4.12)

Thus, the contribution of these terms is
\[
\Lambda_k(s) \left[\frac{\Gamma \left(\frac{s+1}{2} \right)'}{\Gamma \left(\frac{s+1}{2} \right)} - \frac{\Gamma \left(\frac{s}{2} \right)'}{\Gamma \left(\frac{s}{2} \right)} \right].
\]
(4.13)

Combining this with the contribution of the holomorphic terms, we obtain the expression of Theorem 2 for $\Lambda(s, \phi)$.

In (4.12), we have used the following identity, noting that $\Gamma(s/2) = (1/2)^n \Gamma(n/2)$.

Lemma 4.2. The following identity holds.
\[
\int_0^\infty \beta_1(2v) e^v v^{s-1} dv = \frac{1}{2} \Gamma(s) \left[\frac{\Gamma \left(\frac{s+1}{2} \right)'}{\Gamma \left(\frac{s+1}{2} \right)} - \frac{\Gamma \left(\frac{s}{2} \right)'}{\Gamma \left(\frac{s}{2} \right)} \right].
\]
\[\square\]

Proof. Recall that (see [22])
\[
\psi(s) := \frac{\Gamma'(s)}{\Gamma(s)} = -\gamma + \int_0^1 \frac{1 - x^{s-1}}{1 - x} dx.
\]
(4.14)
Therefore
\[
\psi(s + 1/2) - \psi(s) = \int_0^1 \frac{x^{s-1} - x^{s-1/2}}{1-x} \, dx = \int_0^1 \frac{1 - x^{1/2}}{1-x} \, dx
\]
\[= \int_0^1 \frac{x^{s-1}}{1 + x^{1/2}} \, dx = 2 \int_0^1 \frac{u^{2s-1}}{1+u} \, du. \tag{4.15}
\]
Thus we have the useful formula
\[
2 \int_0^1 \frac{w^{s-1}}{1+w} \, dw = \psi \left(\frac{s + 1}{2} \right) - \psi \left(\frac{s}{2} \right). \tag{4.16}
\]
But now
\[
\int_0^\infty \beta_1(2v) e^{v} v^{s-1} \, dv = \int_0^\infty \int_1^\infty \frac{e^{-2uv}}{u} \, du \, e^{v} v^{s-1} \, dv
\]
\[= \Gamma(s) \int_1^\infty (2u - 1)^{-s} u^{-1} \, du = \Gamma(s) \int_1^\infty r^{-s}(1+r)^{-1} \, dr
\]
\[= \Gamma(s) \int_0^1 \frac{w^{s-1}}{1+w} \, dw. \tag{4.17}
\]
This gives the claimed expression.

5 Algebraic-geometric aspects

In the beginning of this section, we consider a slightly more general situation than before. We let \(k \) be an imaginary quadratic field with ring of integers \(\mathcal{O}_k \). We denote by \(a \mapsto \tau \) the nontrivial automorphism of \(k \).

We consider the following moduli problem \(\mathcal{M} \) over \(\text{Sch}/\mathcal{O}_k \). To \(S \in (\text{Sch}/\mathcal{O}_k) \), we associate the category \(\mathcal{M}(S) \) of pairs \((E, \iota)\), where:

- \(E \) is an elliptic curve over \(S \) (i.e. an abelian scheme of relative dimension one over \(S \)), and
- \(\iota : \mathcal{O}_k \to \text{End}_S(E) \) is a homomorphism such that the induced homomorphism

\[
\text{Lie}(\iota) : \mathcal{O}_k \to \text{End}_S(\text{Lie}E) = \mathcal{O}_S
\]

coincides with the structure homomorphism.

The morphisms in this category are the isomorphisms. A pair \((E, \iota)\) is called an elliptic curve with CM by \(\mathcal{O}_k \). We denote by \(\mathcal{M} \) the corresponding set-valued functor of isomorphism classes of objects of \(\mathcal{M} \).
Proposition 5.1. (a) The moduli problem \mathcal{M} is representable by an algebraic stack (in the sense of Deligne-Mumford) which is finite and étale over $\text{Spec} \, \mathcal{O}_k$.

(b) The functor \mathcal{M} has a coarse moduli scheme which is also finite and étale over $\text{Spec} \, \mathcal{O}_k$.

Proof. (a) Let $\tilde{\mathcal{M}}$ be the algebraic moduli stack of elliptic curves over $\text{Spec} \, \mathcal{O}_k$. The forgetful morphism $i : \mathcal{M} \to \tilde{\mathcal{M}}$ is relatively representable by an unramified morphism (rigidity theorem). Since the generic elliptic curve in any characteristic has only trivial (i.e., \mathbb{Z}) endomorphisms, \mathcal{M} has finite fibres over $\text{Spec} \, \mathcal{O}_k$. Now the finiteness of \mathcal{M} over $\text{Spec} \, \mathcal{O}_k$ follows from the valuative criterion of properness, since an elliptic curve with complex multiplication has potentially good reduction. The étaleness of \mathcal{M} over $\text{Spec} \, \mathcal{O}_k$ follows by the Serre-Tate theorem from a study of the p-divisible group of an elliptic curve with CM by \mathcal{O}_k.

(b) That \mathcal{M} has a coarse moduli scheme follows from (a) (or use level-n-structures).

Let ξ be a geometric point of \mathcal{M} and let $\bar{\xi}$ be the corresponding geometric point of \mathcal{M}. Let $\hat{\mathcal{O}}_{\mathcal{M}, \xi}$ and $\hat{\mathcal{O}}_{\mathcal{M}, \bar{\xi}}$ be the completions of the local rings. If ξ corresponds to (E, ι), then we have

$$\text{Aut}(\xi) = \text{Aut}(E, \iota) = \mathcal{O}_k^\times$$

(see Cases 1 and 2 below). This group acts on $\hat{\mathcal{O}}_{\mathcal{M}, \xi}$ and

$$\hat{\mathcal{O}}_{\mathcal{M}, \bar{\xi}} = \left(\hat{\mathcal{O}}_{\mathcal{M}, \xi} \right)^{\text{Aut}(\xi)}.$$ \hfill (5.3)

However, since \mathcal{M} is étale over $\text{Spec} \, \mathcal{O}_k$, we have that $\hat{\mathcal{O}}_{\mathcal{M}, \xi}$ is equal to the strict completion of \mathcal{O}_k in the prime ideal corresponding to the image of ξ in $\text{Spec} \, \mathcal{O}_k$. Hence the action of $\text{Aut}(\xi)$ on $\hat{\mathcal{O}}_{\mathcal{M}, \xi}$ is trivial. Therefore, the canonical morphism

$$\mathcal{M} \to \tilde{\mathcal{M}}$$

(5.4)

is étale, and the last assertion follows.

Corollary 5.2. Let ξ be a geometric point of \mathcal{M} and let $\bar{\xi}$ be the corresponding point of \mathcal{M}. Then

$$\hat{\mathcal{O}}_{\mathcal{M}, \bar{\xi}} = \hat{\mathcal{O}}_{\mathcal{M}, \xi}.$$ \hfill □

Let p be a prime number and let \mathfrak{p} be a prime ideal of \mathcal{O}_k above p. Let κ be an algebraically closed extension of the residue field $\kappa(\mathfrak{p})$ of \mathfrak{p}. Let $(E, \iota) \in \mathcal{M}(\kappa)$, and let X
be the p-divisible group of E. Then the p-adic completion $\mathcal{O}_p = \mathcal{O}_\kappa \otimes \mathbb{Z}_p$ acts on X. We distinguish two cases.

Case 1: p splits in \mathcal{O}_κ. Then $p = \wp \cdot \overline{\wp}$ with $\wp \neq \overline{\wp}$ and

$$\mathcal{O}_p = \mathcal{O}_\wp \oplus \mathcal{O}_{\overline{\wp}} = \mathbb{Z}_p \oplus \mathbb{Z}_p.$$ \hfill (5.5)

By the condition on $\text{Lie}(\iota)$, the corresponding decomposition of X is of the form

$$X = \hat{G}_m \times \mathbb{Q}_p / \mathbb{Z}_p.$$ \hfill (5.6)

In this case, it is obvious that (X, ι) deforms uniquely; i.e., the base of the universal deformation is $\text{Spf} W(\kappa)$, where $W(\kappa)$ denotes the ring of Witt vectors of κ. In this case, the elliptic curve E is ordinary and

$$\iota : \mathcal{O}_\kappa \rightsquigarrow \text{End}(E).$$ \hfill (5.7)

Case 2: p not split in \mathcal{O}_κ. In this case, $\mathcal{O}_p = \mathcal{O}_\wp$ and (X, ι) is a formal \mathcal{O}_\wp-module of height 2 over κ, in the sense of Drinfeld [8] (see also [11]). Let $W_0(\kappa)$ be the ring of relative Witt vectors of κ (see [2]). Then again (X, ι) deforms uniquely; i.e., the base of the universal deformation of (X, ι) is $\text{Spf} W_0(\kappa)$ ([23]; see [11, 2.1]).

In this case, the elliptic curve E is supersingular. Let B_p be the definite quaternion algebra over \mathbb{Q} which ramifies at p. Then $\text{End}(E)$ is isomorphic to a maximal order in B_p.

The main theorem of complex multiplication may be summarized as follows (see [24], [4]).

Proposition 5.3. Let \overline{k} be an algebraic closure of k. The Galois group $\text{Gal}(\overline{k}/k)$ acts on $M(\overline{k})$ through its maximal abelian quotient, which we identify via class field theory with $(k \otimes \mathbb{A}_f)^{\times} / k^{\times}$. There is a bijection

$$M(\overline{k}) = k^{\times} \setminus (k \otimes \mathbb{A}_f)^{\times} / (\mathcal{O}_k \otimes \hat{\mathbb{Z}})^{\times},$$

such that an element of $\text{Gal}(\overline{k}/k)^{\text{ab}}$ represented by an idèle $x \in (k \otimes \mathbb{A}_f)^{\times}$ acts by translation by x on the right-hand side. \hfill \square

Corollary 5.4. Let H be the Hilbert class field of k and let \mathcal{O}_H be its ring of integers. Then

$$M \simeq \text{Spec}(\mathcal{O}_H).$$ \hfill \square
Corollary 5.5. Fix p and a prime \wp above p. Then $\mathcal{M}(\kappa(\wp))$ forms a single isogeny class. There is a bijection

$$\mathcal{M}(\kappa(\wp)) = k^* \setminus (k \otimes \mathcal{A})^* / (\mathcal{O}_k \otimes \hat{\mathbb{Z}})^*.$$

The action by the Frobenius automorphism over $\kappa(\wp)$ on the left-hand side corresponds to the translation by the idèle with component a uniformizer at \wp and 1 at all other finite places on the right.

Remark 5.6. The bijection in Corollary 5.5 is given explicitly as follows. Choose a base point $(E_0, \iota_0) \in \mathcal{M}(\kappa(\wp))$, and an identification $\text{End}^0(E_0) = B_p$. Let $\mathcal{O}(E_0) \subset B_p$ be the maximal order corresponding to $\text{End}(E_0)$. To $g \in (k \otimes \mathcal{A})^*$ there is associated the point $(E, \iota) \in \mathcal{M}(\kappa(\wp))$ whose Tate module $\hat{T}(E) = \prod_t T_I(E)$ (with p-component the covariant Dieudonné module) is the lattice

$$g \cdot \hat{T}(E_0) \subset \hat{T}(E_0) \otimes \mathbb{Q}.$$

(5.8)

In particular,

$$\mathcal{O}(E) = B_p \cap g(\mathcal{O}(E_0) \otimes \hat{\mathbb{Z}})g^{-1}$$

(5.9)

is a maximal order in B_p.

We now turn to the definition of special cycles on the moduli space/stack \mathcal{M}.

Definition 5.7. Let $(E, \iota) \in \mathcal{M}(S)$. A special endomorphism of (E, ι) is an element $y \in \text{End}(E)$ with

$$y \circ \iota(a) = \iota(\overline{a}) \circ y \quad \text{for all} \quad a \in \mathcal{O}_k.$$

(5.10)

Let $V(E, \iota)$ be the set of special endomorphisms of (E, ι). Then $V(E, \iota)$ is an \mathcal{O}_k-module.

Let us first consider the case where $S = \text{Spec} \kappa$ with κ an algebraically closed field. If $\text{char} \kappa = 0$, then $\text{End}(E) = \mathcal{O}_k$ and hence $V(E, \iota) = \{0\}$. The same is true if $\text{char} \kappa = p$ and p splits in \mathcal{O}_k (cf. (5.7)). Let now $\text{char} \kappa = p$, where p does not split. Then $\text{End}(E)$ can be identified with a maximal order $\mathcal{O}(E)$ in the quaternion algebra B_p, which was introduced earlier, and the \mathcal{O}_k-module $V(E, \iota)$ is of rank one. Let $a \mapsto a'$ be the main involution of B_p. Then $V(E, \iota)$ is stable under this involution. Let $y \in V(E, \iota)$. Since

$$y + y' \in \mathbb{Z} \cap V(E, \iota) = \{0\},$$

(5.11)
we obtain \(y^2 = -y \cdot y' \in \mathbb{Z} \). We define a \(\mathbb{Z} \)-valued quadratic form \(Q \) on the \(\mathbb{Z} \)-module \(V(E, \iota) \) of rank 2 by

\[
Q(y) = -y^2 = y \cdot y'.
\]

The definition of this quadratic form extends to an elliptic curve with CM by \(\mathcal{O}_k \) over any connected scheme \(S \).

Definition 5.8. For a positive integer \(t \), let \(Z(t) \) be the moduli problem over \(M \) which to \(S \in (\text{Sch}/\mathcal{O}_k) \) associates the category of triples \((E, \iota, y) \), where \((E, \iota) \in M(S) \) and where \(y \in V(E, \iota) \) satisfies

\[
Q(y) = -y^2 = t.
\]

We denote by

\[
pr : Z(t) \to M
\]

the forgetful morphism. It is obvious that \(pr \) is relatively representable, hence \(Z(t) \) is representable by an algebraic stack. By the rigidity theorem, the morphism \(pr \) is finite and unramified. We also denote by \(pr \) the induced morphism between coarse moduli schemes

\[
pr : Z(t) \to M.
\]

We note that for a geometric point \(\tilde{\xi} \in Z(t) \), we have \(\text{Aut}(\tilde{\xi}) = \{ \pm 1 \} \). Indeed, if \(\tilde{\xi} \) corresponds to \((E, \iota, y) \), then an automorphism is given by a unit \(u \in \mathcal{O}_k^\ast \) with \(uy = yu \), i.e., with \(u = \pi \).

Proposition 5.9. The fibre of \(Z(t) \) in characteristic 0, or in characteristic \(p \), where \(p \) splits in \(k \), is empty. In particular, \(Z(t) \) is an artinian scheme. For \(p \) not split in \(k \), let \(\mathcal{O}_k \) be the prime ideal of \(\mathcal{O}_k \) dividing \(p \). The fibre of \(pr \) over a geometric point \((E, \iota) \in M(k(\wp)) \) is empty if \(t \) is not represented by the quadratic form on \(V(E, \iota) \).

Let \(p \) be inert or ramified in \(k \). We choose a base point \((E_o, \iota_o) \in M(k(\wp)) \) and denote by \(V^{(p)} \) the quadratic space \(V(E_o, \iota_o) \otimes \mathbb{Z} \mathbb{Q} \) over \(\mathbb{Q} \). Then

\[
\text{End}^0(E_o, \iota_o) = \mathbb{B}_p = k \oplus V^{(p)},
\]

where the decomposition is orthogonal with respect to the quadratic form given by the reduced norm on \(\mathbb{B}_p \). Choosing a set of coset representatives \(g_i, i = 1, \ldots, h_k \) for the cosets
on the right-hand side of Corollary 5.5 and applying the construction of Remark 5.6, we obtain \mathcal{O}_k-lattices

$$V(E_i, u_i) = V(\mathcal{O}_k) \cap \mathcal{O}(E_i)$$

in $V(\mathcal{O}_k)$.

Corollary 5.10. Let p be inert or ramified in k and let $\mathfrak{p} \subset \mathcal{O}_k$ over p. Then

$$|Z(t)(\kappa(\mathfrak{p}))| = \sum_{i} |\{x \in V(E_i, u_i) \mid Q(x) = t\}|.$$

We now quote the result of Gross [11, Props. 3.3 and 4.3]. Let p be an inert or ramified prime and let κ be an algebraically closed extension of $\kappa(\mathfrak{p})$. If $\xi \in M(\kappa)$, then there is an isomorphism

$$\hat{\mathcal{O}}_{M, \xi} = W_{\mathcal{O}}(\kappa)$$

(cf. Case 2 above). Here again $W_{\mathcal{O}}(\kappa) = W_{\mathcal{O}_p}(\kappa)$ is the ring of relative Witt vectors. We let π denote a uniformizer of \mathcal{O}_p and hence of $W_{\mathcal{O}}(\kappa)$. Let $\tilde{\xi} \in Z(t)(\kappa)$ with $pr(\tilde{\xi}) = \xi$, and let $\tilde{\xi} \in Z(\mathcal{O}_k)$ be its image in $Z(\mathcal{O}_k)$. Here pr is as in (5.14).

Theorem 5.11 (Gross). We have

$$\hat{\mathcal{O}}_{Z(t)} = \hat{\mathcal{O}}_{Z(\mathcal{O}_k)} = W_{\mathcal{O}}(\kappa)/(\pi^\nu),$$

where

$$\nu = \nu_p(t) = \frac{\ord_p(t) + d_p - 1}{f_p} + 1,$$

$$d_p = \ord_p(\text{disc}_{k/\mathbb{Q}}),$$

and

$$f_p = [\kappa(\mathfrak{p}) : \mathbb{F}_p].$$

In particular, if p is unramified in k, then we have $f_p = 2$, and $d_p = 0$ and $\ord_p(t) \equiv 1(\text{mod } 2)$, and

$$\nu_p(t) = \frac{\ord_p(t) + 1}{2}.$$

If $p \neq 2$ is ramified in k, then $f_p = 1$, $d_p = 1$, and

$$\nu_p(t) = \ord_p(t) + 1.$$
Note that the length of $\hat{O}_Z(t)$ only depends on $\text{ord}_p(t)$. Combining Corollary 5.10 and Theorem 5.11, we therefore obtain an expression for the degree of $Z(t)$. Here we define the degree as in [26], [10]:

$$\deg(Z(t)) = \sum_{\xi \in Z(t)} \log \left(\#(O_Z(t), \xi) \right). \quad (5.19)$$

Theorem 5.12. The degree of $Z(t)$ can be written as

$$\deg(Z(t)) = \sum_p f_p \log(p) \nu_p(t) \cdot \sum [\{x \in V(E_i, \iota_i) | Q(x) = t\}].$$

Here p ranges over the primes that are not split in k.

For a fixed p that is not split in k, we now describe the lattices $V(E_i, \iota_i)$ of (5.17) more explicitly. The basic technique is from [14], [7].

Let Δ be the discriminant of the field k. Fix an auxiliary prime $p_0 \nmid 2p\Delta$ as follows. If p is inert in k, then we require that

$$\langle \Delta, -p_0 \rangle_v = \begin{cases} -1 & \text{if } v = p \text{ or } \infty, \\
1 & \text{otherwise}. \end{cases} \quad (5.20)$$

If p is ramified in k, then we require that

$$\langle \Delta, -p_0 \rangle_v = \begin{cases} -1 & \text{if } v = p \text{ or } \infty, \\
1 & \text{otherwise}. \end{cases} \quad (5.21)$$

Let

$$\kappa_p = \begin{cases} pp_0 & \text{if } p \text{ is inert in } k, \\
p_0 & \text{if } p \text{ is ramified in } k. \end{cases} \quad (5.22)$$

Then B_p is the cyclic algebra $(\Delta, -\kappa_p)$ and thus can be written in the form

$$B_p = k \oplus k \cdot y \quad (5.23)$$

for an element y with $\text{tr}(y) = 0$, $y^2 = -\kappa_p$, and $a \cdot y = y \cdot \bar{a}$ for all $a \in k$.

Let $R = O_k \oplus O_k \cdot y$, so that R is an order in B_p with $R \cap k = O_k$. Suppose that O is a maximal order of B_p containing R. If $x_1 \in R$ and $x_2 \in O$, then $\text{tr}(x_1x_2) \in Z$. Using the coordinates from (5.23), this gives

$$\text{tr}((\alpha_1 + \beta_2y)(\alpha_2 + \beta_2y)) = \text{tr}_k(\alpha_1\alpha_2 - \kappa_p\beta_1\bar{\beta}_2) \in Z. \quad (5.24)$$
Therefore
\[R = \mathcal{O}_k \oplus \mathcal{O}_k \cdot y \subset \mathcal{O} \subset \mathcal{D}^{-1} \oplus \mathcal{K}_p^{-1} \mathcal{D}^{-1} \cdot y, \] (5.25)
where \(\mathcal{D}^{-1} = \sqrt{\Delta}^{-1} \mathcal{O}_k \) is the inverse different of \(k \). Setting
\[V(\mathcal{O}) = V(\mathcal{O}_k) \cap \mathcal{O}, \] (5.26)
we conclude that
\[\mathcal{O}_k \cdot y \subset V(\mathcal{O}) \subset \mathcal{K}_p^{-1} \mathcal{D}^{-1} \cdot y. \] (5.27)
The conditions imposed on \(p_0 \) imply that \(p_0 \) splits. Let \(p_0 \mathcal{O}_k = \wp_0 \bar{\wp}_0 \) and let \(p\mathcal{O}_k = \wp^{e_p} \).
Then, it is easily checked that
\[R' := \mathcal{O}_k \oplus \wp_0^{-1} y \quad \text{and} \quad R'' := \mathcal{O}_k \oplus \bar{\wp}_0^{-1} y \] (5.28)
are orders in \(\mathbb{B}_p \) which contain \(R \). Note that \(R' \) and \(R'' \) cannot be contained in the same order \(\mathcal{O} \). Indeed, if \(R' + R'' \subset \mathcal{O} \), then \((\wp_0^{-1} + \bar{\wp}_0^{-1}) \cdot y = p_0^{-1} \mathcal{O}_k \cdot y \subset \mathcal{O} \). But \(Q(p_0^{-1} y) = -(p_0^{-1} y)^2 = p_0^{-2} \mathcal{K}_p \notin \mathbb{Z} \).

Suppose that \(\mathcal{O} \) is a maximal order containing \(\mathcal{O}_k \oplus \wp_0^{-1} y \). If \(x = \mathcal{K}_p^{-1} \sqrt{\Delta}^{-1} \beta y \in V(\mathcal{O}) \), with \(\beta \in \mathcal{O}_k \), then
\[Q(x) = -x^2 = \mathcal{K}_p^{-1} \mathcal{O}_k, \quad \text{or} \quad \beta \in \wp_0^{-1} \mathcal{K}_p \sqrt{\Delta} \mathcal{O}_k, \] (5.29)
This forces
\[\beta \in \wp_0^{-1} \mathcal{K}_p \sqrt{\Delta} \mathcal{O}_k, \quad \text{or} \quad \beta \in \bar{\wp}_0^{-1} \mathcal{K}_p \sqrt{\Delta} \mathcal{O}_k, \] (5.30)
so that
\[x \in \wp_0^{-1} y \quad \text{or} \quad x \in \bar{\wp}_0^{-1} y. \] (5.31)
Therefore,
\[V(\mathcal{O}) = \wp_0^{-1} \cdot y. \] (5.32)
Fix a maximal order \(\mathcal{O} \) containing \(R' \), and note that \(\mathcal{O} \cap \mathcal{K}_p = \mathcal{O}_k \), i.e., that \(\mathcal{O}_k \) is optimally embedded in \(\mathcal{O} \), in Eichler’s terminology (see[9]). By the Chevalley-Hasse-Noether theorem
It follows that if \(\mathcal{O}' \) is any maximal order in \(\mathbb{B}_p \) in which \(\mathcal{O}_k \) is optimally embedded, then there exists a finite idèle \(g \in k_\mathbf{A} \) such that

\[
\mathcal{O}' = g(\mathcal{O} \otimes \hat{\mathbb{Z}})g^{-1} \cap \mathbb{B}_p.
\]

(5.33)

If

\[
a = \left(g\mathcal{O}_k \otimes \hat{\mathbb{Z}} \right) \cap k,
\]

(5.34)

then

\[
V(\mathcal{O}') = a\bar{a}^{-1}\varphi_0^{-1}y.
\]

(5.35)

Conversely, any ideal \(a \) arises in this way.

Now suppose that \(\mathcal{O}' = \text{End}(E) \) for a supersingular elliptic curve \((E, \iota) \in \mathbf{M}(\kappa_p)\) over \(\bar{\mathbb{F}}_p \) with complex multiplication by \(\mathcal{O}_k \). Note that \(\mathcal{O}_k \) is optimally embedded in \(\mathcal{O}' \) and that

\[
V(E, \iota) = \mathcal{O}' \cap ky = V(\mathcal{O}').
\]

(5.36)

Proposition 5.13. Fix an auxiliary prime \(p_0 \) as above. Then there is an element \(y_0 \) in \(V \) with \(\varpi(y_0) = \kappa_p \), and the lattices \(V(E_i, \iota_i) \) in Theorem 5.12 have the form

\[
V(E_i, \iota_i) \simeq a_i\bar{a}_i^{-1}\varphi_0^{-1} \cdot y_0,
\]

as the \(a_i \) run over representatives for the ideal classes of \(k \). In particular, the isomorphism class of \(V(E_i, \iota_i) \) runs over the genus \([\varphi_0] \) of the ideal \(\varphi_0 \). \(\square \)

Remark. The genus \([\varphi_0] \) is independent of the choice of \(\varphi_0 \) and is characterized by the values of the genus characters. Recall that a basis for the characters of the group of genera are given as follows (see [15]). Let \(q_i \), \(1 \leq i \leq r \) be the primes dividing \(\Delta \). Let

\[
\chi_i(a) = (\Delta, N(a))_{q_i},
\]

(5.37)

where \((,)_{q_i}\) is the Hilbert symbol for \(\mathbb{Q}_{q_i} \). Note that, if \(x \in k^\times \), then \((\Delta, N(x))_{q_i} = 1 \) and

\[
(\Delta, N(a)N(b)^2)_{q_i} = (\Delta, N(a))_{q_i}.
\]

(5.38)
Thus $\chi_i(a)$ depends only on the ideal class of a modulo squares, i.e., defines a character of the group of genera $\text{Cl}(k)/2\text{Cl}(k)$. Any $r - 1$ of the χ_i's give a basis for the characters of this group. The conditions (5.20) and (5.21) on the auxiliary prime p_0 imply that

$$\chi_i(p_0) = (\Delta, p_0)_{q_i} = \begin{cases} (\Delta, -p)_{q_i} & \text{if } p \text{ is inert}, \\ (\Delta, -1)_{q_i} & \text{if } p \text{ is ramified and } q_i \neq p, \text{ and} \\ -(\Delta, -1)_{q_i} & \text{if } p \text{ is ramified and } q_i = p. \end{cases} (5.39)$$

The genus of \wp_0 is determined by these conditions.

Corollary 5.14.

(i) The rational quadratic space $V^{(p)}$ is given by

$$(V^{(p)}, Q) \simeq (k, \kappa_p N),$$

where κ_p is given by (5.22).

(ii) Let C_i be the ideal class

$$C_i = [a_i^{-1} \bar{a}_i, \wp_0] = [a_i \bar{T}_i [\wp_0].$$

Then

$$[x \in V(E_i, t_i) \mid Q(x) = t] = |O_K^c| \cdot |\ell \subset O_K \mid [\ell] = C_i, \text{ and } N(\ell) = p_0 t/\kappa_p|. \quad \square$$

Note that

$$p_0/\kappa_p = \begin{cases} p & \text{if } p \text{ is inert,} \\ 1 & \text{if } p \text{ is ramified.} \end{cases} (5.40)$$

Proof. We just note that, if $x = \beta \cdot y \in V(E_i, t_i)$, with $\beta \in a_i \bar{a}_i^{-1} \wp_0^{-1}$, then $t = Q(x) = \kappa_p N(\beta)$. The ideal $c = \beta a_i^{-1} \bar{a}_i \wp_0$ is integral, lies in the ideal class C_i, and has

$$N(c) = N(\beta)p_0 = tp_0/\kappa_p. \quad (5.41)$$

Note that, by genus theory, as i runs from 1 to h_k, $[a_i]$ runs over the ideal class group and C_i runs over $(2\text{Cl}(k))[\wp_0] = [[\wp_0]]$, the genus of \wp_0, with each class in $[[\wp_0]]$ occurring $2r-1$ times. Here again r is the number of rational primes which ramify in k.

Finally, we specialize to the case of prime discriminant considered in earlier sections of this paper; i.e., let $k = \mathbb{Q}(\sqrt{-q})$ with $q > 3$ a prime congruent to 3 modulo 4. In this case, the class number of k is odd, there is only one genus, and the C_i's run over all ideal classes. Combining the results above, we obtain the following theorem.
Theorem 5.15. The degree of $Z(t)$ can be written as

$$\text{deg}(Z(t)) = 2 \log(q) \cdot (\text{ord}_q(t) + 1) \cdot \rho(t) + 2 \sum_p \log(p) \cdot (\text{ord}_p(t) + 1) \cdot \rho(t/p).$$

Here p runs over the primes which are inert in k. \hfill \Box

This is precisely the expression given in Theorem 3 of the introduction.

§6 Variants

In this section, we sketch a few variations and extensions of the results of the previous sections. However, none of them touch on the most tantalizing problem of establishing a direct connection between the Fourier coefficients and the degrees of special cycles.

The central derivatives of all of the incoherent Eisenstein series constructed in Section 1 should have an arithmetic interpretation analogous to Theorem 3. A full description of such a result would require several extensions of what we have done above, which is specialized in several respects.

First of all, we have restricted to the case of a prime discriminant $\Delta = -q$. This eliminates complications involving genus theory, as h_k is odd. Of course, the moduli problem of Section 5 has been set up to allow elliptic curves with complex multiplication by O_k, where $k = \mathbb{Q}(\sqrt{\Delta})$ for an arbitrary fundamental discriminant $\Delta < 0$. On the analytic side, the machinery of Sections 1 and 2 provides corresponding incoherent Eisenstein series, whose Fourier expansions can be computed by the methods of Section 2. It should then be possible to work out the analogues of Theorems 1, 2, and 3 in this case, except that the group of genera will now play a nontrivial role. In the case of a nonfundamental discriminant, there is more work to be done on both the analytic and the geometric sides.

Second, in Section 2, we have considered only those Eisenstein series built from sections which are defined by the characteristic functions of the completions of O_k. More general sections could be considered at the cost of: (i) more elaborate calculations of Whittaker functions and their derivatives used in computing the Fourier expansion of the central derivative; and (ii) incorporation of a level structure in the moduli problem.

Third, in Section 2, we have restricted to the simplest type of incoherent collection C, i.e., a collection C which is obtained by considering the global quadratic space $(V, Q) = (k, -N)$, and switching the signature from $(0, 2)$ to $(2, 0)$. Thus, at each finite place, $C_p = (k_p, -N)$. The most general collection C is obtained by switching the signature of the space $(V, Q) = (k, \kappa N)$, where $\kappa \in \mathbb{Q}^\times$. In this situation, a slightly more elaborate moduli problem is necessary. We give a brief sketch of this.
Let B be an indefinite quaternion algebra over \mathbb{Q}, with a fixed embedding $i : k \hookrightarrow B$. Fix a maximal order \mathcal{O}_B in B, a positive involution \ast of B stabilizing \mathcal{O}_B, and assume that $i(\mathcal{O}_k) \subset \mathcal{O}_B$.

We consider polarized abelian surfaces A with an action $\iota : \mathcal{O}_B \otimes \mathcal{O}_k \to \text{End}(A)$ compatible with the positive involution $b \otimes a \mapsto (b \otimes a)^* = b^* \otimes \bar{a}$. For such an (A, ι), let

$$V(A, \iota) = \{y \in \text{End}(A) \mid y\iota(b \otimes a) = \iota(b \otimes \bar{a})y\} \quad (6.1)$$

be the space of special endomorphisms. Observe that

$$M_2(k) \simeq B \otimes \mathbb{Q} \hookrightarrow \text{End}^0(A), \quad (6.2)$$

so that A is isogenous to a product A_0^2 for an elliptic curve A_0 with complex multiplication. Thus

$$\text{End}^0(A) \simeq M_2(\text{End}^0(A_0)). \quad (6.3)$$

If A_0 is not a supersingular elliptic curve in characteristic p, for p not split in k, then $\text{End}^0(A) \simeq M_2(k)$ and $V^0(A, \iota) = V(A, \iota) \otimes \mathbb{Q} = 0$. If A_0 is supersingular in characteristic p, then

$$\text{End}^0(A) \simeq M_2(B_p), \quad (6.4)$$

where $B_p = \text{End}_{p}^0(A_0)$ is, as before, the definite quaternion algebra ramified at infinity and p. The commutator of $\iota(b \otimes 1)$ in $\text{End}^0(A)$ is then isomorphic to B', the definite quaternion algebra over \mathbb{Q} with

$$\text{inv}_{\iota}(B') = \begin{cases} \text{inv}_{\iota}(B) & \text{if } \ell \neq p, \text{ and} \\ -\text{inv}_{\iota}(B') & \text{if } \ell = p. \end{cases} \quad (6.5)$$

Note that ι yields an embedding of k into B'. We have a decomposition, analogous to (5.16),

$$B' = k \oplus V^0(A, \iota), \quad (6.6)$$

where $V^0(A, \iota) = k \cdot y$ for a nonzero element $y \in B'$ with $ya = \bar{a}y$ for all $a \in k$. The quadratic form on $V^0(A, \iota)$ is then

$$Q(\beta y) = -(\beta y)^2 = -N(\beta)y^2, \quad (6.7)$$
so that the binary quadratic space \((V^0(\Lambda, \iota), Q) \) is isomorphic to \((k, kN) \), where \(\kappa = -y^2 \). Note that \(B' \) is then isomorphic to the cyclic algebra \((\Delta, -\kappa) \). An analysis of the corresponding integral moduli problem, like that of Section 5, should be possible and give the desired generalization of the results above. The case \(B = M_2(\mathbb{Q}) \) will reduce precisely to the situation of Section 5.

Returning to Theorem 3 in the case where \(k = \mathbb{Q}(\sqrt{-q}) \), from the point of view of Arakelov theory, it is possible to give an interpretation of the negative Fourier coefficients of \(\phi \) as degrees of cycles.

First we recall (see [26]) that an Arakelov divisor for \(M = \text{Spec}(\mathcal{O}_H) \) is an expression of the form

\[
D = \sum_{\lambda} h_{\lambda} \lambda + \sum_p n_p p,
\]

(6.8)

where \(p \) runs over the nonzero prime ideals of \(\mathcal{O}_H \), \(\lambda \) runs over the complex places of \(H \), the \(n_p \)'s are integers (almost all zero), and the \(h_{\lambda} \)'s are real numbers. Let \(\text{Div}_c(M) \) be the group of Arakelov divisors, and let \(\text{Pic}_c(M) \) be its quotient by the group of principal Arakelov divisors (see [26]).

We can view the cycles \(Z(t) \) defined in Section 2 as elements of \(\text{Div}_c(M) \) as follows. Fix the embedding of \(k \) into \(\mathbb{C} \), where \(\sqrt{-q} \) has positive imaginary part, and let \(\omega = (1 + \sqrt{-q})/2 \) so that \(\mathcal{O}_k = \mathbb{Z} + \mathbb{Z} \omega \). Let

\[
j_0 = j(\omega) = j(\mathcal{O}_k) \in \mathcal{O}_H
\]

(6.9)

be the corresponding singular value of the \(j \)-function.

Let \(p \) be a rational prime which does not split in \(k \) and let \(p\mathcal{O}_k = \wp^\sigma \). Then \(\wp \) is principal and hence splits completely in \(H \). For any prime \(p \) of \(\mathcal{O}_H \) above \(\wp \), the image of \(j_0 \) under the reduction map \(\mathcal{O}_H \to \mathcal{O}_H/p \) is the \(j \)-invariant of an elliptic curve \(E_p \) over \(\overline{\mathbb{F}_p} \), unique up to isomorphism, with complex multiplication by \(\mathcal{O}_k \). For each such \(p \), this gives a bijective map from the primes over \(\wp \) to the fiber \(M(\overline{\mathbb{F}_p}) \). Then, for \(t > 0 \),

\[
Z(t) = \sum_p \sum_{p|p} n_p(t)p,
\]

(6.10)

where

\[
n_p(t) = n_p(t) \cdot |\{ x \in V(E_p, \iota) \mid Q(x) = t \}|.
\]

(6.11)
Here $V(E_p, \iota)$ is the lattice of special endomorphisms of E_p, as in Definition 5.7, and $\nu_p(t)$ is the integer given in Theorem 5.11. Let

$$C_p = [V(E_p, \iota)]^{-1},$$

(6.12)

where $[V(E_p, \iota)] \in \text{Pic}(\mathcal{O}_k) \cong \text{Cl}(k)$ is the class of the rank 1 \mathcal{O}_k-module $[V(E_p, \iota)]$. Using Corollary 5.14, (6.11) becomes

$$n_p = \nu_p(t) \cdot |\{c \subset \mathcal{O}_k \mid [c] = C_p \text{ and } N(c) = t / \kappa_p\}|,$$

(6.13)

where

$$\kappa_p = \begin{cases} p & \text{if } p \text{ is inert in } k, \text{ and} \\ 1 & \text{if } p = q. \end{cases}$$

(6.14)

We view $Z(t)$ as an element of $\text{Div}_c(M)$ with zero archimedean component.

To define an element $Z(t) \in \text{Div}_c(M)$, when $t < 0$, we use a construction based on an idea explained to us by Gross. For a point (E, ι) of $M(C)$, let E_{top} be the underlying real torus. By analogy with Definition 5.7, we define the space of special endomorphisms

$$V(E, \iota) = \{y \in \text{End}(E_{\text{top}}) \mid y\iota(a) = \iota(\bar{a})y\}.$$

(6.15)

If we write $E = \mathbb{C}/L$ for a lattice L with a chosen basis, then

$$\text{End}(E_{\text{top}}) \cong M_2(\mathbb{Z}),$$

(6.16)

and so, by analogy with the case of a supersingular elliptic curve in characteristic p, $\text{End}(E_{\text{top}})$ is isomorphic to a maximal order in the quaternion algebra $M_2(\mathbb{Q})$. It is not difficult to check that $V(E, \iota)$ is a rank 1 \mathcal{O}_k-module with a \mathbb{Z}-valued quadratic form given by $Q(y) = -y^2$.

For each embedding λ of $H = k(j_0)$ into \mathbb{C}, let E_λ be the elliptic curve over \mathbb{C} with j-invariant $\lambda(j_0)$. This curve has complex multiplication by \mathcal{O}_k and space of special endomorphisms, in the sense just defined, $V(E_\lambda, \iota)$. Let $C_\lambda = [V(E_\lambda, \iota)]^{-1} \in \text{Pic}(\mathcal{O}_k)$. Then, for $t \in \mathbb{Z}_{<0}$ and for $\tau = u + iv$ in the upper half plane, we associate the Arakelov divisor

$$Z(t) = Z(t, v) := \sum_\lambda r_\lambda \lambda,$$

(6.17)

where

$$r_\lambda(t) = r_\lambda(t, v) = 2\beta_1(4\pi|t|v) \cdot |\{y \in V(E_\lambda, \iota) \mid Q(y) = t\}|$$

$$= 2\beta_1(4\pi|t|v) \cdot |\{c \subset \mathcal{O}_k \mid [c] = C_\lambda \text{ and } N(c) = -t\}|.$$

(6.18)
Here β_1 is the exponential integral (0.11). Thus we have defined for all $t \neq 0$ an Arakelov divisor with

$$\deg(Z(t)) = \begin{cases} a_t(\phi) & \text{if } t > 0, \\
a_t(\phi, v) & \text{if } t < 0, \end{cases}$$ \hspace{1cm} (6.19)$$

and hence

$$\phi(\tau) = a_0(\phi, v) + \sum_{t \neq 0} \deg(Z(t)) q^t,$$ \hspace{1cm} (6.20)$$

extending (0.13).

Acknowledgments

This paper has its origin in a question raised by Gross at the Durham conference in the summer of 1996 when we presented results on the higher dimensional cases. We thank him for his insistence that we consider this "simplest" case and for several helpful suggestions. We are indebted to Zagier for his observation about the relation of our function to his work with Gross and to Bost for his interpretation of the constant term.

Stephen S. Kudla was partially supported by National Science Foundation grant DMS-9622987. Tonghai Yang was partially supported by National Science Foundation grant DMS-9700777.

References

Kudla: Department of Mathematics, University of Maryland, College Park, Maryland 20742, USA
Rapoport: Mathematisches Institut, Universität zu Köln, Weyertal 86-90, 50931 Köln, Germany
Yang: Department of Mathematics, State University of New York at Stony Brook, Stony Brook, New York 11794, USA