COMMON ZEROS OF THETA FUNCTIONS AND CENTRAL
HECKE L-VALUES OF CM NUMBER FIELDS OF DEGREE 4
(PROC. AMER. MATH. SOC. 126 (1998), NO. 4, 999–1004)

Tonghai Yang

September 14, 1996

Abstract. In this note, we apply the method in [RVY] to construct a family of
infinite many theta series over the Hilbert-Blumenthal modular surfaces with a com-
mon zero. We also relate the nonvanishing of the central L-values of certain Hecke
characters of non-biquadratic CM number fields of degree 4 to the nonvanishing of
theta functions at CM points in the the Hilbert-Blumenthal modular surfaces.

0. Introduction. It is well-known that the theta function $\theta(z) = \sum e(x^2z)$ has
no zeros in the upper half plane, where $e(z) = e^{2\pi i z}$. It was proved in [RVY] that,
for integers $d \equiv 1 \mod 4$ and $k \geq 0$, whether the theta functions

$$\theta_{d,k}(z) = (\text{Im}(2z))^{-\frac{k}{2}} \sum_{(x,d) = 1} \frac{d}{x} H_k(x(\text{Im}(2z))) e(x^2z)$$

vanishes at certain Heegner points is related to the vanishness of Central Hecke L-
values ([RVY, Theorem 0.2]). Here H_k is a suitably normalized Hermite polynomial.
Over a real quadratic field $F = \mathbb{Q}(\sqrt{p})$, one can also define a theta function $\theta_{d,k}$ on
the Hilbert upper half plane H^2 in the same manner. In fact, one can replace $(\frac{d}{x})$ by
any quadratic Hecke character of F. (See (1) and (10) for the exact meaning). They
are nonholomorphic Hilbert modular forms of weight $k + \frac{1}{2}$ for some congruence
group Γ_d over F. We remark that Γ_d is independent of k. The first result involves
the zero locus of these theta functions. We prove that those theta functions have
sometimes a common zero when k varies.

Theorem 0. Let $p = 5, 13, \text{ or } 61$. Let $d \equiv 1 \mod 4$ be a rational integer such that
every prime factor of d is split in either $\mathbb{Q}(\sqrt{-7})$ or $\mathbb{Q}(\sqrt{-7p})$.
(a) If $d < 0$, then $\{\theta_{d,k} : k \geq 0, \text{ even}\}$ has a common zero in $\mathbb{Q}(\sqrt{p}, \sqrt{-7}) \cap \mathbb{Q}_2$.
(b) If $d > 0$, then $\{\theta_{d,k} : k \geq 1, \text{ odd}\}$ has a common zero in $\mathbb{Q}(\sqrt{p}, \sqrt{-7}) \cap \mathbb{Q}_2$.
Here we embed $\mathbb{Q}(\sqrt{p}, \sqrt{-7})$ into \mathbb{C}^2 via $z \mapsto (\sigma_1(z), \sigma_2(z))$, where $\sigma_j(\sqrt{p}) = (-1)^{j-1} \sqrt{p}$, and $\sigma_j(\sqrt{-7}) = i \sqrt{7}$ for $j = 1, 2$.

1991 Mathematics Subject Classification. 11F27, 11F67, 11M06.
Key words and phrases. Theta function, central Hecke L-value, ideal class number.
partially supported by NSF grant DMS-9304580
Theorem is also true if we replace p by 17 and -7 by -11. The proof of this theorem and its generalization will be given in section 2. In this note, we will also relate the central Hecke L-value to the values of theta functions at CM points and relate the vanishing of the Hecke L-value to the CM zeros of the theta functions (Theorem 2 and 8).

1. Notation and preliminary. Let assume $F = \mathbb{Q}(\sqrt{p})$ is a real quadratic number field with $p \equiv 1 \mod 4$. We view F as a subfield of \mathbb{R} with $\sqrt{p} > 0$, so the other embedding of F into \mathbb{R} is give by $x = a + b\sqrt{p} \mapsto x' = a - b\sqrt{p}$, $a, b \in \mathbb{Q}$. We embed F into \mathbb{C}^2 via $x \mapsto (x, x')$. Let $J^2 = \{z = (z_1, z_2) \in \mathbb{C}^2 : \text{Im } z_i > 0\}$ be the Hilbert upper plane. Given a function ϕ on \mathbb{C}, we define a function on \mathbb{C}^2, still denoted by ϕ, via $\phi(z) = \phi(z_1)\phi(z_2)$. Let u be a fixed unit of F with $u > 0$ and $u' < 0$. Let μ be an quadratic Hecke character μ of F with principal conductor $f\mathcal{O}_F$, then μ induces a character $\mu : (\mathcal{O}_F/f) \longrightarrow \mathbb{C}^1$. We assume $\mu(-1) = 1$. Multiplying by u if necessary, we may assume that f is totally positive. For a rational integer $k \geq 0$, we define a theta function $\theta_{\mu, k}$ on the Hilbert upper plane J^2 via

\[
\theta_{\mu, k}(z) = (\text{Im } (2z))^{-\frac{k}{2}} \sum_{x \in \mathcal{O}_F \setminus \{0\}} \mu(x)H_k(x\sqrt{\text{Im } (2z)})e(x^2z).
\]

Here $e(z) = e^{2\pi iz}$, and H_k is the kth Hermite polynomial normalized via [RVY, (0.13)]. The theta function $\theta_{\mu, k}$ is a nonholomorphic Hilbert modular form of weight $k + \frac{1}{2}$ for some congruence group Γ_d over F and is holomorphic when $k = 0$ or 1. We notice that Γ_d is independent of k.

Let D be a totally positive integer in \mathcal{O}_F, and let $E = F(\sqrt{-D})$ be a totally imaginary extension of F. We assume throughout this paper

2. DO_F is prime, and E/F is ramified only at DO_F;
3. Every prime of F dividing $2f\mathcal{O}_F$ is split in E/F, and
4. E is generic in the sense of Rohrlich ([Roh, page 519]), that is, $\mathcal{O}_E^* = \mathcal{O}_F^*$ and $\text{CL}(F) \hookrightarrow \text{CL}(E)$ naturally.

Let $\Phi = \{\sigma_1, \sigma_2\}$ be the CM type of E given by

\[
\sigma_1(\sqrt{p}) = \sqrt{p}, \quad \sigma_1(\sqrt{-D}) = i\sqrt{D}
\]

and

\[
\sigma_2(\sqrt{p}) = -\sqrt{p}, \quad \sigma_2(\sqrt{-D}) = i\sqrt{D}'.
\]

Here \sqrt{a} stands for the positive square root of a for $a > 0$. We embed E into \mathbb{C}^2 via $z \mapsto (\sigma_1(z), \sigma_2(z))$.

Let $\tilde{\mu} = \mu \circ \tilde{N}_{E/F}$, then $\tilde{\mu}|\mathbb{A}_E^* = 1$ and there is a character η of $E^1 \setminus E^1_{\mathbb{A}}$ such that $\tilde{\mu} = \tilde{\eta}$, where $\tilde{\eta}(z) = \eta(z/\tilde{z})$. Let χ_{can} be a canonical Hecke character of E of infinite type Φ in the sense of Rohrlich ([Roh, page 518]). Then the character $\chi_{\text{can}}\tilde{\mu}$ is closely related to CM abelian varieties ([Sh]) and can be some simple properties ([RVY, Lemma 2.0]). Let $\chi = \chi_{\text{can}}|\mathbb{A}_E^*$, then $\chi|\mathbb{A}_E^* = \epsilon$ is the quadratic Hecke character of F associated to E/F. Denote $\eta_k = \eta\chi^k|_{E_\mathbb{A}}$, so $\tilde{\eta}_k = \tilde{\eta}\chi^{2k}$. Let $\psi = \prod \psi_v$ the ‘canonical’ additive character of $F_\mathbb{A}/F$ given by

\[
\psi_v(x) = \begin{cases} e^{2\pi ix} & \text{if } v \text{ is real}, \\ e^{-2\pi i\lambda(x)} & \text{if } v \text{ is finite}, \end{cases}
\]

where $\lambda : F_{\mathbb{A}} \to \text{tr} \otimes \mathbb{Q}/\mathbb{Z} \to \otimes \mathbb{Q}/\mathbb{Z}$. Let $\psi' = \psi \circ \text{tr}$.

Lemma 1. Let $\alpha = \frac{4u}{D\sqrt{p}}$ and $\delta = \sqrt{-D}$. Then for any rational integer $k \geq 0$, the datum $(\chi, \eta_k, \alpha, \delta, \psi, \Phi)$ satisfies (0.4), (0.6), and (0.9) in [RVY].

Proof. It is easy to see that
$$\epsilon_v(\alpha) = \begin{cases} \epsilon_{\sqrt{p}}(\sqrt{p}) & \text{if } v = \sqrt{p}\mathcal{O}_F \text{ or } D\mathcal{O}_F, \\ 1 & \text{otherwise}. \end{cases}$$

Here we have abused the notation by using \sqrt{p} for the place of F corresponding to the prime ideal $\sqrt{p}\mathcal{O}_F$. Since $n(\psi_v) = -1$ when $v = \sqrt{p}\mathcal{O}_F$ and $n(\psi_v) = 0$ otherwise, one has, by [RVY, Lemma 2.3],
$$\epsilon\left(\frac{1}{2}, (\chi\tilde{\eta}_k)_v, \frac{1}{2} \psi_{E_v}(\chi\tilde{\eta}_k)_v(\delta)\right) = \begin{cases} ? & \text{if } v = D\mathcal{O}_F, \\ \epsilon_{\sqrt{p}}(\sqrt{p}) & \text{if } v = \sqrt{\mathcal{O}_F}, \\ 1 & \text{otherwise}. \end{cases}$$

But the global root number $\epsilon\left(\frac{1}{2}, \chi\tilde{\eta}_k\right) = \mu(-1)(-1)^{2k} = 1$ by [RVY, Lemma 2.3]. So $? = \epsilon_{\sqrt{p}}(\sqrt{p})$. Therefore
$$\epsilon\left(\frac{1}{2}, (\chi\tilde{\eta}_k)_v, \frac{1}{2} \psi_{E_v}(\chi\tilde{\eta}_k)_v(\delta)\right) = \epsilon_v(\alpha)$$
for every place v of F. This verifies Condition (0.6) in [RVY]. The verification of [RVY, (0.4) and (0.9)] is trivial.

Now applying [RVY, Theorem 2.7], one has

Theorem 2. Notation as above. Assume that F has ideal class number 1. Fix a square root r of $-D$ mod $16f^2$. For every ideal class $C \in \text{CL}(E)$, choose a primitive ideal $\mathfrak{A} \in C^{-1}$ relatively prime to $2f$, and write
$$\mathfrak{A}^2 = [a^2, \frac{b + \sqrt{-D}}{2}]$$
with a totally positive, and
$$b \equiv r \mod 8f^2.$$
Then
$$L(k + 1, (\chi \text{can}\tilde{\mu})^{2k+1}) = \kappa \left| \sum_{C \in \text{CL}(E)} \frac{\mu(a)}{(\chi \text{can}\tilde{\mu})^{2k+1}(\mathfrak{A})} \theta_{\mu,k}(\tau_{\mathfrak{A}}) \right|^2.$$

Here
$$\kappa = \frac{\pi^{2k+2}}{(k!)^2 \sqrt{N_{F/Q}D}} \left(\frac{D}{p^f} \right)^{2k+1},$$
and
$$\tau_{\mathfrak{A}} = \frac{u(b + \sqrt{-D})}{8\sqrt{p^f}a^2}.$$

For a CM type Φ of E, we write $k\Phi$ for $\sum_{\sigma \in \Phi} k\sigma$. According to Rohrlich ([Roh2, page 700]), there is a group homomorphism
$$h_{k\Phi} : \text{CL}(E) \longrightarrow \text{CL}(E^{k\Phi}).$$
Here $E^{k\Phi}$ is the number field generated by $z^{k\Phi} = \prod \sigma(z)^k$, $z \in E^*$. Applying [RVY, Theorem 2.8], one has
Corollary 3. Notation and assumption as in Theorem 2. Assume further that $h_{(2k+1)\Phi}$ is injective. Then the following statements are equivalent.

(a) The central L-value $L(k+1, (\chi_{\text{can}}\tilde{\mu})^{2k+1}) = 0$.
(b) The global theta lifting $\theta_{\alpha,\chi}(\eta_k) = 0$.
(c) For every ideal class $C \in CL(E)$, $I_C(\eta_k) = 0$.
(d) For every ideal class $C \in CL(E)$, τ_Φ is a root of the theta function $\theta_{\mu,k}$.

In general, one has

Proposition 4. Notation as in Lemma 1. If $CL(F) \supset \text{ker } h_{(2k+1)\Phi}$, and the central value $L(k+1, (\chi_{\text{can}}\tilde{\mu})^{2k+1}) = 0$, then $\tau = \frac{u(b+\sqrt{-D})}{8\sqrt{pf^2}} \in E$ is a root of the Hilbert modular form $\theta_{\mu,k}$. Here $b \in \mathcal{O}_F$ satisfies $b^2 \equiv -D \mod 16f^2$.

Proof. Applying the argument in the proof of [RVY, Theorem 2.8] to [RVY, Theorem 2.6], one has that $2u(b+\sqrt{-D})$ is a root of $\theta_{\mu,k,\mathcal{O}_F}$, where $\theta_{\mu,k,\mathcal{O}_F}$ is given by [RVY, (2.3)]. Simple manipulation gives

$$\theta_{\mu,k,\mathcal{O}_F}(z) = \gamma' N_{F/\mathbb{Q}}(4f)^{-k} \theta_{\mu,k}(\frac{z}{16f^2})$$

where $\gamma' = \prod_{v} \frac{G(\frac{1}{2}, \psi_{\mu,k})}{\sqrt{q_v}} \in \mathbb{C}$. So τ is a root of $\theta_{\mu,k}$.

2. Common zeros of theta functions. Recall $F = \mathbb{Q}(\sqrt{p})$ with $p \equiv 1 \mod 4$ being a prime. Let $d \equiv 1 \mod 4$ be a rational integer relatively prime to p, and let e^d be the Hecke character of \mathbb{Q} associated to the Dirichlet character ($\frac{d}{\cdot}$), and let $\mu = e^d \circ N_{F/\mathbb{Q}}$. Denote $\theta_{d,k} = \theta_{\mu,k}$, i.e.,

$$\theta_{d,k}(z) = (\text{Im } (2z))^{-\frac{3}{2}} \sum_{x \in \mathcal{O}_F} \left(\frac{d}{x, x'} \right) H_k(x \sqrt{\text{Im } (2z)}) e(x^2 z).$$

For a rational prime number $q \equiv 3 \mod 4$, let $E = \mathbb{Q}(\sqrt{p}, \sqrt{-q})$ and $F_2 = \mathbb{Q}(\sqrt{-q})$. For an integer $k \geq 0$, let $N^k : CL(E) \rightarrow CL(F_2)$ be the map induced by $\mathfrak{A} \mapsto (N_{E/F_2}(\mathfrak{A}))^{2k+1}$.

Proposition 5. Let $q \equiv 3 \mod 4$ be a rational prime number such that $(q/p) = -1$ and every prime factor of $2d$ is split in either $\mathbb{Q}(\sqrt{-q})$ or $\mathbb{Q}(\sqrt{-pq})$. Assume further that $q > 3$ and $CL(F) \supset \text{ker } N^k$. Let $b \in \mathcal{O}_F$ be an algebraic integer in F such that $b^2 \equiv -q \mod 16d^2$.

(a) If $d < 0$ and k is even, then $\tau = \frac{u(b+\sqrt{-q})}{8\sqrt{pd^2}}$ is a root of $\theta_{d,k}$.
(b) If $d > 0$ and k is odd, then $\tau = \frac{u(b+\sqrt{-q})}{8\sqrt{pd^2}}$ is a root of $\theta_{d,k}$.

Proof. Since p is a prime, $CL(F)$ is an odd group, and so the canonical map $CL(F) \rightarrow CL(E)$ is injective. Since $q > 3$, $\mathcal{O}_E^\circ = \mathcal{O}_{F_2}^\circ$. So E is generic. Let $\chi_{\text{can},2}$ is a canonical Hecke character of F_2, and let $\chi_{\text{can}} = \chi_{\text{can},2} \circ N_{E/F_2}$, then χ_{can} is a canonical Hecke character of E of infinite type $\Phi = \{\sigma_1, \sigma_2\}$. Moreover, one has

$$L(s, \chi_{\text{can}}^{2k+1}(\frac{d}{\cdot}) \circ N_{E/\mathbb{Q}}) = L(s, \chi_{\text{can},2}^{2k+1}(\frac{d}{\cdot}) \circ N_{F_2/\mathbb{Q}}) L(s, (\chi_{\text{can},2}^{2k+1}(\frac{d}{\cdot}) \circ N_{F_2/\mathbb{Q}})^{\sigma_2}).$$

Under either condition (a) or (b), the global root number of $\chi_{\text{can},2}^{2k+1}(\frac{d}{\cdot}) \circ N_{F_2/\mathbb{Q}}$ is -1, and so the central L-value $L(k+1, \chi_{\text{can},2}^{2k+1}(\frac{d}{\cdot}) \circ N_{F_2/\mathbb{Q}}) = 0$. This implies $L(k+1, \chi_{\text{can}}^{2k+1}(\frac{d}{\cdot}) \circ N_{E/\mathbb{Q}}) = 0$. Notice that $h_{(2k+1)\Phi} = N^k$ in this case. Now applying Proposition 4, one proves the theorem.
Corollary 6. Notation as in Proposition 5. Assume \(q > 3 \) and that \(E = \mathbb{Q}(\sqrt{p}, \sqrt{-q}) \) has ideal class number 1.

(a) If \(d < 0 \), then \(\tau = \frac{u(b+\sqrt{-q})}{s\sqrt{pd^2}} \) is a common root of \(\theta_{d,k} \) for all even integers \(k \geq 0 \).

(b) If \(d > 0 \), then \(\tau = \frac{u(b+\sqrt{-q})}{s\sqrt{pd^2}} \) is a common root of \(\theta_{d,k} \) for all odd integer \(k > 0 \).

Proof of Theorem 0 According to [Yam, Table], the biquadratic CM fields satisfying all the conditions in Corollary 6 are \(\mathbb{Q}(\sqrt{p}, \sqrt{-7}) \) with \(p = 5, 13, 61 \) and \(\mathbb{Q}(\sqrt{17}, \sqrt{-11}) \). This proves Theorem 0.

3. Nonbiquadratic CM number fields of degree 4. Notation and assumptions as in section 1. We further assume that \(D \) is not a rational integer. Write \(D = x + y\sqrt{p} > 0 \) with \(x, y \in \frac{1}{2}\mathbb{Z} \), \(x \equiv y \mod \mathbb{Z} \), and \(y \neq 0 \). Then \(D' = x - y\sqrt{p} > 0 \) and \(q = DD' \) is a positive rational prime number. When \(q = p \), \(\tilde{E} \) is cyclic over \(\mathbb{Q} \) and is a subfield of \(\mathbb{Q}(\zeta_p) \). In this case, \(E^\Phi = E \). When \(q \neq p \), Let \(K = E(\sqrt{-D'}) \), and identify it as a subfield of \(\mathbb{C} \) via

\[
\sigma_1 : \quad K \longrightarrow \mathbb{C}; \quad \sqrt{p} \mapsto \sqrt{p}, \quad \sqrt{-D} \mapsto i\sqrt{D}, \quad \sqrt{-D'} \mapsto i\sqrt{D'}.
\]

Let

\[
\delta = \sqrt{-D} = i\sqrt{D}, \quad \delta' = \sqrt{-D'} = i\sqrt{D'},
\]

and

\[
\tilde{\delta} = \delta + \delta', \quad \tilde{\delta}' = \delta - \delta' = -q.
\]

Then \(\delta\delta' = -q \) and \(\tilde{\delta}\tilde{\delta}' = -2yp \). Furthermore, let \(E' = F(\delta') \), \(\tilde{E} = \mathbb{Q}(\sqrt{q}) \), \(\tilde{E} = \tilde{F}(\delta) \), and \(\tilde{E}' = \tilde{F}(\delta') \). Then \(E' \), \(\tilde{E} \), and \(\tilde{E}' \) are all subfields of \(K \) and \(K \) is a Dihedral extension of \(\mathbb{Q} \) of degree 8. Write \(\text{Gal}(K/\mathbb{Q}) = \langle \sigma, \tau \rangle \) with

\[
\sigma : \delta \mapsto \delta', \quad \delta' \mapsto -\delta, \quad \tilde{\delta} \mapsto -\tilde{\delta}', \quad \tilde{\delta}' \mapsto \tilde{\delta}, \quad \sqrt{p} \mapsto -\sqrt{p}, \quad \sqrt{q} \mapsto -\sqrt{q},
\]

and

\[
\tau : \delta \mapsto \delta, \quad \delta' \mapsto -\delta', \quad \tilde{\delta} \mapsto \tilde{\delta}', \quad \tilde{\delta}' \mapsto \tilde{\delta}, \quad \sqrt{p} \mapsto \sqrt{p}, \quad \sqrt{q} \mapsto \sqrt{q}.
\]

Notice \(\Phi = \{1, \sigma\} \). Let \(\tilde{\Phi} = \{1, \tau\} \), then \(\tilde{\Phi} \) is a CM type of \(\tilde{E} \). One has \(E^\Phi = \tilde{E} \) and \(\tilde{E}^\Phi = E \). So there is a map for every integer \(n > 0 \)

\[
h_{n,\Phi} \circ h_{n,\Phi} : \quad \text{CL}(E) \longrightarrow \text{CL}(\tilde{E}) \longrightarrow \text{CL}(E).
\]

Proposition 7. Assume that \(F \) has ideal class number 1.

(a) When \(q \neq p \), the map \(h_{n,\Phi} \circ h_{n,\Phi} \) is the \((2n)\)-th power map.

(b) When \(q = p \), \(h_{n,\Phi}^2 \) is the \((2n)\)-th power map.

Proof. Given an ideal \(\mathfrak{A} \) of \(E \), we also use \(\mathfrak{A} \) for its ideal class in \(\text{CL}(E) \). We only prove the case \(n = 1 \), the others are the same. By definition ([Roh2, page 700]), \(h_{\Phi}(\mathfrak{A}) = (\mathfrak{A}\sigma(\mathfrak{A})\mathcal{O}_K) \cap \mathcal{O}_E \). Since \(\text{Gal}(K/\tilde{E}) = \{1, \tau\sigma^3\} = \{1, \sigma\tau\} \), and \(\tau \in \text{Gal}(K/E) \), one has

\[
h_{\Phi}(\mathfrak{A})\mathcal{O}_K = (\mathfrak{A}\sigma(\mathfrak{A})\mathcal{O}_K) \cap (\tau\sigma^3(\mathfrak{A})\tau(\mathfrak{A})\mathcal{O}_K)
= (\mathfrak{A}\sigma(\mathfrak{A})\mathcal{O}_K) \cap (\sigma\tau(\mathfrak{A})\mathfrak{A}\mathcal{O}_K)
= \mathfrak{A}\sigma(\mathfrak{A})\mathcal{O}_K.
\]
So

\[h_{\Phi} \circ h_{\Phi}(\mathfrak{A}) = (\mathfrak{A}\sigma(\mathfrak{A})\mathcal{O}_K)^{\Phi} \cap E \]
\[= \mathfrak{A}\sigma(\mathfrak{A})\mathcal{O}_K \tau(\mathfrak{A}\sigma(\mathfrak{A})\mathcal{O}_K) \cap E \]
\[= \mathfrak{A}^2 \sigma(\mathfrak{A})\tau(\mathfrak{A})\mathcal{O}_K \cap E \]
\[= \mathfrak{A}^2 \mathcal{O}_K \cap E \]
\[= \mathfrak{A}^2 N_{E'/E}(\sigma(\mathfrak{A})) \]
\[= \mathfrak{A}^2 \]

since \(F \) has ideal class number 1. This proves (a). Claim (b) can be proved similarly.

Now applying Corollary 3, one has immediately the following

Theorem 8. Assume that \(F \) has ideal class number 1, and that \(E = F(\sqrt{-D}) \) satisfies conditions (2) – (4). Assume further that \(D \) is not a rational number and \((2(2k + 1), h_E) = 1 \), where \(h_E \) is the ideal class number of \(E \). Then the central value

\[L(k + 1, (\chi\text{can}\tilde{\mu})^{2k+1}) = 0 \]

if and only if for every ideal class \(C \in \text{CL}(E) \) and a (and every) primitive ideal \(\mathfrak{A} \in C^{-1} \) relatively prime to \(2f \), the CM point \(\tau_{\mathfrak{A}} \) in Theorem 2 is a root of the Hilbert modular form \(\theta_{\mu,k} \).

The author would like to thank the Institute for Advanced Study for its hospitality and financial support during the preparation of this note.

References

