First Midterm Exam – Solutions

1. (15 pts) Decide for each of the following statements if they are true or not. If yes, give a short proof why. If not, give a counterexample.

 (a) The sum of two rational numbers is rational.
 TRUE. Let \(q, r \) be rational. Then there exist integers \(a, b, c, d \) with \(b, d \neq 0 \) such that \(q = \frac{a}{b} \) and \(r = \frac{c}{d} \). Then \(q + r = \frac{a}{b} + \frac{c}{d} = \frac{ad + cb}{bd} \). Since \(ad + cb \) and \(bd \) are integers we know \(q + r \) is a rational number.

 (b) The product of two irrational numbers is irrational.
 FALSE. E.g. take \(\sqrt{2} \cdot (-\sqrt{2}) = -2 \).

 (c) A bounded set of real numbers always contains a maximal element.
 FALSE. E.g. \(S = (0, 1) \) is bounded but \(\sup S = 1 \notin S \).

2. (20 pts)

 (a) Give the precise definition of the supremum of a set of real numbers.

 A number \(B \) is called a supremum of a nonempty set \(S \) of real numbers if \(B \) has the following two properties:
 a) \(B \) is an upper bound for \(S \).
 b) No number less than \(B \) is an upper bound for \(S \).

 (b) State the least upper bound axiom (with all the appropriate conditions).

 Every nonempty set \(S \) of real numbers that is bounded above has a supremum.

3. (20 pts) Show that for any positive integer \(n \) we have

 \[
 1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \cdots + \frac{1}{\sqrt{n}} \leq 2\sqrt{n}
 \]

 Hint: use induction.

 Base case: \(n = 1 \). We have \(1 \leq 2 \).

 Induction step:

 Assume \(1 + \frac{1}{\sqrt{2}} + \cdots + \frac{1}{\sqrt{n}} \leq 2\sqrt{n} \), want to show \(1 + \frac{1}{\sqrt{2}} + \cdots + \frac{1}{\sqrt{n}} + \frac{1}{\sqrt{n+1}} \leq 2\sqrt{n+1} \).

 We know by the induction hypothesis that \(1 + \frac{1}{\sqrt{2}} + \cdots + \frac{1}{\sqrt{n}} + \frac{1}{\sqrt{n+1}} \leq 2\sqrt{n} + \frac{1}{\sqrt{n+1}} \).

 Now we need to check that \(2\sqrt{n} + \frac{1}{\sqrt{n+1}} \leq 2\sqrt{n+1} \).
Since everything is positive we can square both sides and this is equivalent to checking

\[4 + \frac{4\sqrt{n}}{\sqrt{n + 1}} + \frac{1}{n + 1} \leq 4(n + 1). \]

The left hand side yields

\[4 + \frac{4\sqrt{n}}{\sqrt{n + 1}} + \frac{1}{n + 1} = \frac{4n + 4 + 4\sqrt{n^2 + n}}{n + 1}. \]

So we check that \(4n + 4 + 4\sqrt{n^2 + n} \leq 4(n + 1)^2\).

We know that \(n^2 + n \leq n^2 + 2n + 1\), thus

\[4n + 4 + 4\sqrt{n^2 + n} \leq 4n^2 + 4n + 4(n + 1) = 4(n + 1)^2. \]

\[\square \]

4. (25 pts) Let \(f\) and \(g\) be step functions defined the following way:

\[f(x) = \begin{cases} 1 & \text{if } 2 \leq x < 3, \\ 2 & \text{if } 3 \leq x < 5, \\ 3 & \text{if } 5 \leq x \leq 8, \end{cases} \quad \text{and} \quad g(x) = \begin{cases} 2 & \text{if } 1 \leq x < 4, \\ -1 & \text{if } 4 \leq x < 6. \end{cases} \]

(a) Give a short definition of a step function.

A function \(s\), whose domain is a closed interval \([a, b]\), is called a step function if there is a partition \(P = \{x_0, x_1, \ldots, x_n\}\) of \([a, b]\) such that \(s\) is constant on each open subinterval of \(P\). That is to say, for each \(k = 1, 2, \ldots, n\), there is a real number \(s_k\) such that \(s(x) = s_k\) if \(x_{k-1} < x < x_k\).

Note: the textbook insists on using closed intervals in the definition, but this is not taken that seriously in practice.

(b) Show that \(f + g\) is a step function and describe it fully! (Be careful with the domain!)

Note that \(f\) is defined on \([2, 8]\) and \(g\) is defined on \([1, 6]\). So \(f + g\) can only be defined on \([2, 6]\). Thus strictly speaking as a step function \(f + g\) is only defined on \([2, 6]\). (If we take the strict definition with the closed intervals then this wouldn’t even be a step-function.) We have

\[f + g = \begin{cases} 3 & x \in [2, 3) \\ 4 & x \in [3, 4) \\ 1 & x \in [4, 5) \\ 2 & x \in [5, 6) \end{cases} \]

(c) Evaluate the integral \(\int_2^5 (f(x) + g(x))\,dx\).

Using part b) we get \(\int_2^5 (f(x) + g(x))\,dx = 3 + 4 + 1 = 8\).
5. (20 pts)

(a) Recall that the conjugate of a complex number \(z = a + bi \) (with \(a, b \in \mathbb{R} \)) is defined as \(\bar{z} = a - bi \). Prove that for any two complex numbers \(z_1, z_2 \) we have \(\overline{z_1 + z_2} = \bar{z}_1 + \bar{z}_2 \) and \(\overline{z_1 \cdot z_2} = \bar{z}_1 \cdot \bar{z}_2 \).

Let \(z_1 = a_1 + b_1i, \ z_2 = a_2 + b_2i \). Then

\[
z_1 + z_2 = a_1 + b_1i + a_2 + b_2i = (a_1 + a_2) + i(b_1 + b_2).
\]

So \(\overline{z_1 + z_2} = (a_1 + a_2) - i(b_1 + b_2) \).

Also \(\bar{z}_1 = a_1 - b_1i \) and \(\bar{z}_2 = a_2 - b_2i \). Thus

\[
\bar{z}_1 + \bar{z}_2 = (a_1 + a_2) - i(b_1 + b_2) = \overline{z_1 + z_2}.
\]

Similarly we have

\[
z_1 \cdot z_2 = a_1a_2 + a_1b_1i + a_2b_1i - b_1b_2 = (a_1a_2 - b_1b_2) + i(a_1b_2 + a_2b_1).
\]

So \(\overline{z_1 \cdot z_2} = (a_1a_2 - b_1b_2) - i(a_1b_2 + a_2b_1) \).

And we have \(\bar{z}_1 \cdot \bar{z}_2 = (a_1 - b_1i)(a_2 - b_2i) = (a_1a_2 - b_1b_2) - i(a_1b_2 + a_2b_1) \).

Thus \(\overline{z_1 \cdot z_2} = \bar{z}_1 \cdot \bar{z}_2 \).

(b) Show that if the complex number \(z \) is a solution of \(z^6 + 3z^5 - 4z^4 + 8z^2 - z + 1 = 0 \) then \(\bar{z} \) is also a solution.

Hint: You cannot solve the equation explicitly. You have to use the properties of the \(z \to \bar{z} \) function to solve the problem. (If you are doing complicated computations then you are not on the right track...)

This means we must show \(\bar{z}^6 + 3\bar{z}^5 - 4\bar{z}^4 + 8\bar{z}^2 - \bar{z} + 1 = 0 \) Thus it suffices to show that

\[
\bar{z}^6 + 3\bar{z}^5 - 4\bar{z}^4 + 8\bar{z}^2 - \bar{z} + 1 = \bar{z}^6 + 3\bar{z}^5 - 4\bar{z}^4 + 8\bar{z}^2 - \bar{z} + 1
\]

as \(0 = 0 \). However this follows from repeated application of part a) because we know that \(\overline{z_1 + z_2} = \bar{z}_1 + \bar{z}_2 \) and \(\overline{z_1 \cdot z_2} = \bar{z}_1 \cdot \bar{z}_2 \). Also from class we know that for \(a \in \mathbb{R} \) and \(z \in \mathbb{C} \) we have that \(\bar{a} = a \) and \(\overline{a \cdot z} = a \bar{z} \).