Homework 2

Due: February 16, 2010, beginning of the class. Late homework will not be accepted.

1. (Exercise 2.2) Assume that a sequence of independent events \(\{A_i\} \) satisfy \(\sum_{n=1}^{\infty} P(A_i) = \infty \). Let

\[\tau_k = \min\{n : \sum_{i=1}^{n} 1_{A_i} = k\} \]

By the (second) Borel-Cantelli lemma with probability one we will have infinitely many of the \(A_i \)'s occurring, i.e. \(\sum_{k=1}^{\infty} 1_{A_k} = \infty \) and \(P(\tau_k < \infty) = 1 \) for all \(k \). Prove the slightly stronger statement

\[k = E \sum_{i=1}^{\tau_k} P(A_i). \]

Why is this a stronger statement?

Hint: construct a martingale using the random variables \(1_{A_i} \) and use the fact that \(\tau_k \) is a stopping time.

2. In each of the following cases check if the process is a standard Brownian motion.

 (a) \(X_t = \frac{1}{\sqrt{t}} B_{t^2} \) where \(B_t \) is a standard BM.

 (b) \(Y_t = \sin(\alpha) B_t^{(1)} + \cos(\alpha) B_t^{(2)} \) where \(B_t^{(1)} \) and \(B_t^{(2)} \) are independent standard BM's and \(\alpha \in \mathbb{R} \).

 (c) \(Z_t = \begin{cases} B_t & \text{if } 0 \leq t \leq 1 \\ B_{t+1} - B_2 + B_1 & \text{if } t \geq 1 \end{cases} \)

 where \(B_t \) is a standard BM.

3. (Exercise 3.1 (b)-(d)) Let \(U_t \) be a standard Brownian bridge (see page 41 for the definition).

 (a) Show that \(\text{Cov}(U_s, U_t) = s(1-t) \) for \(0 \leq s \leq t \leq 1 \).

 (b) Let \(X_t = g(t)B_{h(t)} \), and find functions \(g \) and \(h \) such that \(X_t \) has the same covariance as the Brownian bridge. (\(B_t \) is a standard BM.)

 (c) Show that \(Y_t = (1+t)U_{t/(1+t)} \) is a BM on \([0, \infty)\).

Hint: (c) should help with (b)...

4. An urn contains \(a \) red and \(b \) black balls. In each step we draw a ball randomly and replace it with two balls of the same color. (Essentially in each step we add a new ball to the urn whose color is determined randomly.) Let \(X_n \) be the ratio of red balls in the urn after the \(n^{th} \) step. \(X_0 = a/(a+b) \).

Show that \(X_n \) is a martingale and it converges almost surely.

Bonus problem. Assume that \(X \) and \(Y \) are independent, identically distributed with mean 0 and variance 1. Show that if the random variables \(X + Y, X - Y \) are independent then \(X \) and \(Y \) are standard normals.