Fall 2009 MATH 833 — Random Matrices B. Valké

Lectures 6 — 7 : Marchenko-Pastur Law

Notes prepared by: A. Ganguly

We will now turn our attention to rectangular matrices. Let
X = (XDX% s 7Xn) € Rpxn

where X;; are iid, E(X;;) = O,E(Xl?j) =1 and p = p(n).
Define
1 T X
Sp=—-XX" €RP*P
n

and let
A< A< <N

denote the eigenvalues of the matrix S,,.
Define the random spectral measure by

1 p
m=t3"0
pi:l

We are now ready to state the Marchenko-Pastur law
Theorem 1. Let Sy, pin be as above. Assume that p/n "= y € (0,1]. Then we have
in(w) = 1 as

where p is a deterministic measure whose density is given by

dp 1
de  2mxy

(b - l’)(l‘ - a>1(a§x§b) (1)
Here a and b are functions of y given by

aly) = (1—vy)? bly) = 1+ )

Remark 2. If y > 1 then since rank(S) = p A n we will have roughly n(y — 1) zero eigenvalues.

Since pi, = % P, 85, we see that there will be a mass of (1 — y~!) at 0 in the limiting measure.

P
Since the nonzero eigenvalues of X X7 and X7 X are same we can say that in this case the limiting

distribution is
(1—y")do+p
where p satisfies (1)

Remark 3. Observe that if y = 1, then a = 0,b = 4, and thus
du 1
dz = %\/ (4 - $)$1(0§x§4)

In this case p is the image of semicircle distribution under the mapping x — 2



Proof. : We now begin the proof of Marchenko Pastur Law. Since the support of p is compact, p
is uniquely determined by its moments. So as in the Wigners case it is enough to show

/xkd,unﬁ/xkdu

Again following Wigner’s case, Borel Cantelli lemma says it is enough to show the following

E/xkdunﬁ/xkdu

Ci
Var(/xk duy) < )

Computation of the second integral in 1 will show that

k—1

[ =50

Now notice that

B [ o du = By N) = 5 BTr(XXT /n)]
=1

1 1
= WE[Z X1 Xiogy Xingo Xisgo - - - Xigju Xirji] = ok > E(1,J)
IJ 1,J

where I € [p]* and J € [n]*.
Now this corresponds to a directed loop on a bipartite graph. For example if £ = 4 then for typical
{i1,12,13,14} and {j1, j2, j3,ja} we have the following picture.

As in the Wigner’s case we see that each edge must appear at least twice, otherwise E (I, J) = 0.
Now we have 2k steps in the directed loop. Thus we see that we have at most k£ edges in the



skeleton, hence at most k£ + 1 vertices in the skeleton.

Next assume that number of vertices = m < k. Let m = a + b where a = # of I vertices and
b = # of J vertices. Then the total number of ways choosing a I vertices and b J vertices < Cp®n?,
where C' is a constant independent of n. The contribution of these terms in the expectation
< C'p*nb/pnF — 0 as n — oo.

Thus we need to look at loops which have exactly k + 1 vertices and %k edges. These are exactly
the double trees.

Reshuffle them to get the following structure.

Start with an I vertex. Vertices that can be reached in even steps are the I vertices, the rest are
the J vertices.

Next we ask the question: How many double trees are there for a given shape? Here by the shape
of a tree we mean the vertices numbered in order of appearence. For example

(2345467686439310111032), (1213141516 17161816 1413191367 6 13 12)

will give us the same shape, because after renumbering in order of appearance both will give us the
following double tree
(12343565753282910921)

and all of them look like the figure above. Thats is we have to choose r + 1 [ vertices from
[p] and k — r J vertices from [n]. This can be done in P(p,r + 1)P(n,k — r) where P(n,k) =
n(n—1)...(n —k+ 1) is permutation of k objects from n distinct objects. Notice that

P(p,r+1)P(n,k —1) = npy (1 + O(n™)), where y, = p/n

k-1

1
E(/ 2* dpy,) = ok ZE(I, J) = Zy;(l—l—O(n_l))x#{double tree shapes with r+1 I and k—r J vertices}

1,J r=0



Since y, — y, as n — 00, its clear that all we need now is to show that

1 (k\ (k-1
#{double tree shapes with r+1 [ and k —r J vertices} = ( > ( )
r+1\r T

Towards this end we try to correspond each double tree shape with the following type of path /sequence
of 2k steps.

1. If i is odd then s; € {—1,0}

2. If i is even then s; € {0,1}, s9, =0

3. Forany l =1,2,...,2k, we have 22:1 s; > 0. That is the path is never below 0.

4. #{i:s; =1} = #{i: s, = —1} = r. Thats is there are exactly r upsteps and r downsteps

5. Z?ﬁl s; = 0. That is we return to 0 at the end.
Given any such sequence {si}?ﬁl, clearly we can construct a tree as following:

e Suppose 7 is odd. If s; = —1 then we go down the double tree, if s; = 0 then we go up from

an I vertex but we will return

e Suppose now ¢ is even. If s; = 1 then we go one step up in the double tree. If s; = 0 then we
go one step down

Next given a double tree shape we construct such a sequence {52}1221 First for each I vertex we
mark the first edge leading to it and the last edge leaving it. After marking the previous double
will look like the following. The circled vertices are the I vertices.

Now put s; = 1 if the i-th edge is marked and its going up, s; = —1 if i-th edge is marked and
going down, s; = 0 otherwise. For example the above double tree will give the following path.



We have to verify this allocation of —1,0,1 would still make {s;}?%, satisfy condition (3). Suppose
if possible we have a first [ such that

211 21

Z s; = —1, hence Zsi =0, and s9_1 = —1

; i=1
Then the other part tells us that we can construct a double tree with vertices {1,2...,2[}, and
since s9;_1 = —1, the second bullet from the other part says that we are not moving up to a new

vertex,but going down to an old vertex in {1,2...,2[}. But this destroys the double tree shape
giving us a contradiction. Hence we see that if we allocate —1,0, 1 by the above rule then we indeed
get a sequence {s;}2%, satisfying required conditions.

Thus the set of the double tree shapes is in bijection with the set of sequence {3Z %1, so all we
need to do now is count such sequences {s;}?*,.

Since sg # +1, not considering condition (3) for the moment we see that out of k£ — 1 positions
for +1 and k positions for —1 we have to choose r each. Therefore the number of such sequences

is (57 (4.
Lets now count the number of sequences which fail condition (3). Since those paths hit —1 there

exists a first [, such that Zf;l s; = —1 (By construction of the sequence s; can be —1 only when

k is odd.). We now construct a new sequence {s;}?, by 'reflection’. Put
sh=us;, fori=1,...,20—1, sh =59, =0

Fori <i<k-—1, put

1,—1) if (s2i,82i4+1) = (1,—1)

0,0) if (s24,82:+1) = (0,0)

1

,0) if (s24,52i41) = (0,—1)
0,—1) if (s2,82i41) = (1,-0)

/ /
(595 32i+1

= (
= (
=
= (

Clearly the set of all sequences {s;}2¥,, which fail condition (3) is in bijection with the set of
sequences {s/}?* But to count the number of such sequences {s}}?*, we just have to count the
number of ways we can choose r —1 ‘+1’ from k£ — 1 of them, and r + 1 ‘=1’ from k of them. This
can be done in (’;:i) (r +1) So the total number of sequences {s;}?*, which satisfies condition (1 -

k—1\ (k k—1 k 1 k—1\ [k
(0 -Co)0E) -7 0)
This proves the fact about expectation and the proof of the variance bound is similar to that of
Wigner Matrix. [

4) is given by




We now move to some particular type of random matrices, namely the Gaussian Ensembles.

Gaussian Orthogonal Ensemble (GOE): Here we look at matrices M,, of the form M, =
[Xi,j]Zj:1 where

Xij=Xj: Xi; % N(0,1), i<j, and X;; ~ V2N(0,1)

and they are all independent.
We can construct them in following way. Take a matrix A = [Yi,jmjzl» where Y; ; u N(0,1). Then

M, = (A+AT)/V2

is a GOE.

Gaussian Unitary Ensemble (GUE): These are very similar to GOE. Here we look at matrices
M, of the form M,, = [Xi,jmjzl where

Xi;=Xj5 Xij~N(0,1/2)+iN(0,1/2), i < j, and X;; ~ N(0,1)

and they are all independent. We can construct them in them in the following way. Take a matrix

A=Y ]"_,, where Y; ; % N(0,1/2) + iN(0,1/2) | Then

ij=1»
M, = (A+ A%)/V/2

is GUE

Gaussian Symplectic Ensemble (GSE) Define Z as the following block diagonal matrix
Zonxon = diag(A, A... A), where

0 1

-1 0

Call a matrix M € C?>"*2" symplectic if
Z=MZM"

We next define the space of quaternions. Define the following 2 x 2 matrices

e lio ] o] _foi], _[1o0
YVl P2 o202 oo

€1 -z = —€ez-€e1 = eg, 91226222632:—1

Note that



The conjugation rule is as follows
1= 1,e2 = —ep, €63 = —e3,64 = —€4
The vector space generated by {e1,e2,es,1} over C is called the space of quaternions.

A quaternion “ Z is real if ¢, ¢, ¢®) ¢™ are real where
c

[Z Z] D14 ® eyt g eg+ g @ - ey

] is called real standard quaternion if its real and if
c

. a
A random quaternion [

q(l)u q(2)7 q(3)7 q(4) ”rj N(07 1/4)

i, 17"e3+qi,"e4

1 2 3 4
A GSE is defined by M,, = [Qi,j]zjzl where for i < j, Q;; are iid standard quaternions, Q; ; = Q;.,
and on the diagonal ¢ = j we have ql-(g) ~ N(0,1/2) We can construct such a matrix as follows. Let

A = [Y; ]2 where Y; ; are iid real standard quaternions. Then M, = (4 + A*)/+/2 is GSE.

Let dM be the reference lebesgue measure , based on the determining entries. Define the density

function w.r.t dM as .

Zn,5
Then this defines the density of GOE, GUE and GSE for § = 1,2, 4 respectively.

exp(—gTr(Mz))



