
Fall 2009 MATH 833 – Random Matrices B. Valkó

Lectures 6 – 7 : Marchenko-Pastur Law

Notes prepared by: A. Ganguly

We will now turn our attention to rectangular matrices. Let

X = (X1,X2, . . . ,Xn) ∈ Rp×n

where Xij are iid, E(Xij) = 0, E(X2
ij) = 1 and p = p(n).

Define
Sn =

1
n

XXT ∈ Rp×p

and let
λ1 ≤ λ2 ≤ . . . ≤ λp

denote the eigenvalues of the matrix Sn.
Define the random spectral measure by

µn =
1
p

p∑
i=1

δλi

We are now ready to state the Marchenko-Pastur law

Theorem 1. Let Sn, µn be as above. Assume that p/n
n→∞−→ y ∈ (0, 1]. Then we have

µn(·, ω) ⇒ µ a.s

where µ is a deterministic measure whose density is given by

dµ

dx
=

1
2πxy

√
(b− x)(x− a)1(a≤x≤b) (1)

Here a and b are functions of y given by

a(y) = (1−√y)2, b(y) = (1 +
√

y)2

Remark 2. If y > 1 then since rank(S) = p ∧ n we will have roughly n(y − 1) zero eigenvalues.
Since µn = 1

p

∑p
i=1 δλi

we see that there will be a mass of (1 − y−1) at 0 in the limiting measure.
Since the nonzero eigenvalues of XXT and XT X are same we can say that in this case the limiting
distribution is

(1− y−1)δ0 + µ

where µ satisfies (1)

Remark 3. Observe that if y = 1, then a = 0, b = 4, and thus

dµ

dx
=

1
2πx

√
(4− x)x1(0≤x≤4)

In this case µ is the image of semicircle distribution under the mapping x → x2
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Proof. : We now begin the proof of Marchenko Pastur Law. Since the support of µ is compact, µ

is uniquely determined by its moments. So as in the Wigners case it is enough to show∫
xk dµn →

∫
xk dµ

Again following Wigner’s case, Borel Cantelli lemma says it is enough to show the following

1.
E

∫
xk dµn →

∫
xk dµ

2.
Var(

∫
xk dµn) ≤ Ck

n2

Computation of the second integral in 1 will show that∫
xk dµ =

k−1∑
r=0

yr

r + 1

(
k

r

)(
k − 1

r

)

Now notice that

E

∫
xk dµn =

1
p
E(

p∑
i=1

λp
i ) =

1
p
E[Tr(XXT /n)k]

=
1

pnk
E[

∑
I,J

Xi1j1Xi2j1Xi2j2Xi3j2 . . . Xikjk
Xi1jk

] ≡ 1
pnk

∑
I,J

E(I, J)

where I ∈ [p]k and J ∈ [n]k.
Now this corresponds to a directed loop on a bipartite graph. For example if k = 4 then for typical
{i1, i2, i3, i4} and {j1, j2, j3, j4} we have the following picture.

As in the Wigner’s case we see that each edge must appear at least twice, otherwise E(I, J) = 0.
Now we have 2k steps in the directed loop. Thus we see that we have at most k edges in the
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skeleton, hence at most k + 1 vertices in the skeleton.
Next assume that number of vertices = m ≤ k. Let m = a + b where a = # of I vertices and
b = # of J vertices. Then the total number of ways choosing a I vertices and b J vertices ≤ Cpanb,
where C is a constant independent of n. The contribution of these terms in the expectation
≤ C ′panb/pnk → 0 as n →∞.
Thus we need to look at loops which have exactly k + 1 vertices and k edges. These are exactly
the double trees.

Reshuffle them to get the following structure.

Start with an I vertex. Vertices that can be reached in even steps are the I vertices, the rest are
the J vertices.

Next we ask the question: How many double trees are there for a given shape? Here by the shape
of a tree we mean the vertices numbered in order of appearence. For example

(2 3 4 5 4 6 7 6 8 6 4 3 9 3 10 11 10 3 2), (12 13 14 15 16 17 16 18 16 14 13 19 13 6 7 6 13 12)

will give us the same shape, because after renumbering in order of appearance both will give us the
following double tree

(1 2 3 4 3 5 6 5 7 5 3 2 8 2 9 10 9 2 1)

and all of them look like the figure above. Thats is we have to choose r + 1 I vertices from
[p] and k − r J vertices from [n]. This can be done in P (p, r + 1)P (n, k − r) where P (n, k) =
n(n− 1) . . . (n− k + 1) is permutation of k objects from n distinct objects. Notice that

P (p, r + 1)P (n, k − r) = npkyr
n(1 + O(n−1)), where yn = p/n

Thus

E(
∫

xk dµn) =
1

pnk

∑
I,J

E(I, J) =
k−1∑
r=0

yr
n(1+O(n−1))×#{double tree shapes with r+1 I and k−r J vertices}
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Since yn → y, as n →∞, its clear that all we need now is to show that

#{double tree shapes with r + 1 I and k − r J vertices} =
1

r + 1

(
k

r

)(
k − 1

r

)
Towards this end we try to correspond each double tree shape with the following type of path/sequence
of 2k steps.

1. If i is odd then si ∈ {−1, 0}

2. If i is even then si ∈ {0, 1}, s2k = 0

3. For any l = 1, 2, . . . , 2k, we have
∑l

i=1 si ≥ 0. That is the path is never below 0.

4. #{i : si = 1} = #{i : si = −1} = r. Thats is there are exactly r upsteps and r downsteps

5.
∑2k

i=1 si = 0. That is we return to 0 at the end.

Given any such sequence {si}2k
i=1, clearly we can construct a tree as following:

• Suppose i is odd. If si = −1 then we go down the double tree, if si = 0 then we go up from
an I vertex but we will return

• Suppose now i is even. If si = 1 then we go one step up in the double tree. If si = 0 then we
go one step down

Next given a double tree shape we construct such a sequence {si}2k
i=1 First for each I vertex we

mark the first edge leading to it and the last edge leaving it. After marking the previous double
will look like the following. The circled vertices are the I vertices.

Now put si = 1 if the i-th edge is marked and its going up, si = −1 if i-th edge is marked and
going down, si = 0 otherwise. For example the above double tree will give the following path.
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We have to verify this allocation of −1, 0, 1 would still make {si}2k
i=1 satisfy condition (3). Suppose

if possible we have a first l such that

2l−1∑
i=1

si = −1, hence
2l∑

i=1

si = 0, and s2l−1 = −1

Then the other part tells us that we can construct a double tree with vertices {1, 2 . . . , 2l}, and
since s2l−1 = −1, the second bullet from the other part says that we are not moving up to a new
vertex,but going down to an old vertex in {1, 2 . . . , 2l}. But this destroys the double tree shape
giving us a contradiction. Hence we see that if we allocate −1, 0, 1 by the above rule then we indeed
get a sequence {si}2k

i=1 satisfying required conditions.

Thus the set of the double tree shapes is in bijection with the set of sequence {si}2k
i=1, so all we

need to do now is count such sequences {si}2k
i=1.

Since s2k 6= +1, not considering condition (3) for the moment we see that out of k − 1 positions
for +1 and k positions for −1 we have to choose r each. Therefore the number of such sequences
is

(
k−1

r

)(
k
r

)
.

Lets now count the number of sequences which fail condition (3). Since those paths hit −1 there
exists a first l, such that

∑2l−1
i=1 si = −1 (By construction of the sequence sk can be −1 only when

k is odd.). We now construct a new sequence {s′i}2k
i=1 by ’reflection’. Put

s′i = si, for i = 1, . . . , 2l − 1, s′2k = s2k = 0

For l ≤ i ≤ k − 1, put

(s′2i, s
′
2i+1) = (1,−1) if (s2i, s2i+1) = (1,−1)

= (0, 0) if (s2i, s2i+1) = (0, 0)

= (1, 0) if (s2i, s2i+1) = (0,−1)

= (0,−1) if (s2i, s2i+1) = (1,−0)

Clearly the set of all sequences {si}2k
i=1, which fail condition (3) is in bijection with the set of

sequences {s′i}2k
i=1 But to count the number of such sequences {s′i}2k

i=1 we just have to count the
number of ways we can choose r− 1 ‘+1’ from k− 1 of them, and r +1 ‘−1’ from k of them. This
can be done in

(
k−1
r−1

)(
k

r+1

)
. So the total number of sequences {si}2k

i=1 which satisfies condition (1 -
4) is given by (

k − 1
r

)(
k

r

)
−

(
k − 1
r − 1

)(
k

r + 1

)
=

1
r + 1

(
k − 1

r

)(
k

r

)
This proves the fact about expectation and the proof of the variance bound is similar to that of
Wigner Matrix.

5



We now move to some particular type of random matrices, namely the Gaussian Ensembles.

Gaussian Orthogonal Ensemble (GOE): Here we look at matrices Mn of the form Mn =
[Xi,j ]ni,j=1 where

Xi,j = Xj,i, Xi,j
iid∼ N(0, 1), i < j, and Xi,i ∼

√
2N(0, 1)

and they are all independent.
We can construct them in following way. Take a matrix A = [Yi,j ]ni,j=1, where Yi,j

iid∼ N(0, 1). Then

Mn = (A + AT )/
√

2

is a GOE.

Gaussian Unitary Ensemble (GUE): These are very similar to GOE. Here we look at matrices
Mn of the form Mn = [Xi,j ]ni,j=1 where

Xi,j = X̄j,i, Xi,j ∼ N(0, 1/2) + iN(0, 1/2), i < j, and Xi,i ∼ N(0, 1)

and they are all independent. We can construct them in them in the following way. Take a matrix
A = [Yi,j ]ni,j=1, where Yi,j

iid∼ N(0, 1/2) + iN(0, 1/2) ] Then

Mn = (A + A∗)/
√

2

is GUE

Gaussian Symplectic Ensemble (GSE) Define Z as the following block diagonal matrix
Z2n×2n = diag(A,A . . . , A), where

A =

[
0 1
−1 0

]

Call a matrix M ∈ C2n×2n symplectic if

Z = MZMT

We next define the space of quaternions. Define the following 2× 2 matrices

e1 =

[
i 0
0 −i

]
, e2 =

[
0 1
−1 0

]
, e3 =

[
0 i

i 0

]
,1 =

[
1 0
0 1

]

Note that
e1 · e2 = −e2 · e1 = e3, e1

2 = e2
2 = e3

2 = −1
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The conjugation rule is as follows

1̄ = 1, ē2 = −e2, ē3 = −e3, ē4 = −e4

The vector space generated by {e1, e2, e3,1} over C is called the space of quaternions.

A quaternion

[
a b

c d

]
is real if q(1), q(2), q(3), q(4) are real where

[
a b

c d

]
= q(1) · 1 + q(2) · e2 + q(3) · e3 + q(4) · e4

A random quaternion

[
a b

c d

]
is called real standard quaternion if its real and if

q(1), q(2), q(3), q(4) iid∼ N(0, 1/4)

Let Qi,j = q
(1)
i,j · 1 + q

(2)
i,j · e2 + q

(3)
i,j · e3 + q

(4)
i,j · e4

A GSE is defined by Mn = [Qi,j ]ni,j=1 where for i < j , Qi,j are iid standard quaternions, Qi,j = Q̄j,i,

and on the diagonal i = j we have q
(0)
i,i ∼ N(0, 1/2) We can construct such a matrix as follows. Let

A = [Yi,j ]ni,j=1 where Yi,j are iid real standard quaternions. Then Mn = (A + A∗)/
√

2 is GSE.

Let dM be the reference lebesgue measure , based on the determining entries. Define the density
function w.r.t dM as

1
Zn,β

exp(−β

4
Tr(M2))

Then this defines the density of GOE, GUE and GSE for β = 1, 2, 4 respectively.
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