
c©F. Waleffe, 2008/09/01 Vectors

These are compact lecture notes for Math 321 at UW-Madison. Read them carefully, ideally before
the lecture, and complete with your own class notes and pictures. Skipping the ‘theory’ and jumping
directly to the exercises is a tried-and-failed strategy that only leads to the typical question ‘I have
no idea how to get started’. There are many explicit and implicit exercises within the text that
complement the ‘theory’. Many of the ‘proofs’ are actually good ‘solved exercises.’ The objectives
are to review the key concepts, emphasizing geometric understanding and visualization.

1 Vectors: Geometric Approach

What’s a vector? in elementary calculus and linear algebra you probably defined vectors as a list of
numbers such as ~x = (4, 2, 5) with special algebraic manipulations rules, but in elementary physics
vectors were probably defined as ‘quantities that have both a magnitude and a direction such as
displacements, velocities and forces’ as opposed to scalars, such as mass, temperature and pressure,
which only have magnitude. We begin with the latter point of view because the algebraic version
hides geometric issues that are important to physics, namely that physical laws are invariant under
a change of coordinates - they do not depend on our particular choice of coordinates - and there
is no special system of coordinates, everything is relative. Our other motivation is that to truly
understand vectors, and math in general, you have to be able to visualize the concepts, so rather
than developing the geometric interpretation as an after-thought, we start with it.

1.1 Vector addition and multiplication by a scalar

We begin with vectors in 2D and 3D Euclidean spaces, E 2 and E 3 say. E 3 corresponds to our
intuitive notion of the space we live in (at human scales). E 2 is any plane in E 3. These are the
spaces of classical Euclidean geometry. There is no special origin or direction in these spaces. All
positions are relative to other reference points and/or directions.

~a

~a

A

B

C

D Vectors in those spaces are the set of all possible displacements which
are oriented line segments whose origin does not matter. The vector−−→
AB ≡ ~a is the displacement from point A to point B. If we make
the same displacement ~a starting from another point C we end up at

another point D but
−−→
CD = ~a =

−−→
AB. Two vectors

−−→
AB and

−−→
CD are

equal if they are opposite legs of a parallelogram and have the same
direction.

We’ll denote by E3 the set of all possible vectors in E 3, to emphasize that vectors (displacements)
and points are distinct concepts. The length of vector ~a is denoted by |~a|. It is a positive real
number. When there is no risk of confusion we simply write a for |~a|. When writing by hand, we
use an arrow on top ~a or a wiggle underneath instead of the boldface ~a. Velocities, accelerations
and forces are also vectors that can be described by oriented line segments, but strictly speaking
these are all in different ‘spaces’: the velocity space, acceleration space, force space, etc. All these
spaces are physically connected but we do not add displacements to forces for instance, so they are
mathematically distinct.

Vectors add according to the parallelogram rule: If we move 1 mile North then 1 mile East, we
end up

√
2 miles Northeast of the starting point. The net displacement would be the same if we

move 1mi East first, then 1mi North. So vector addition is commutative: ~a +~b = ~b + ~a. It is also
associative: ~a +~b + ~c = (~a +~b) + ~c = ~a + (~b + ~c).
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~b + ~a
~a +~b

~a
~b

~c~a +~b

~b + ~c

~a +~b + ~c

Note that in general ~a, ~b and ~c are not in the same plane, so the 2D figure is not general, but it is
easy enough to visualize associativity in 3D.

~a

(−~a)

To every vector ~a we can associate an opposite vector denoted (−~a) that
is the displacement exactly opposite to ~a. Vector subtraction ~b− ~a is then
defined as the addition of~b and (−~a). In particular ~a+(−~a) = 0 corresponds
to no net displacement. This is an important difference between points and
displacements, there is no special point in our space, but there is one special
displacement: the zero vector ~0 such that ~a + (−~a) = ~0 = (−~a) + ~a and
~a +~0 = ~a, for any ~a.

The other key operation that characterizes vectors is multiplication by a real number α ∈ R.
Geometrically, ~v = α~a is a new vector parallel to ~a but of length |~v| = |α||~a|. The direction of
~v is the same as ~a if α > 0 and opposite to ~a if α < 0. Obviously (−1)~a = (−~a), multiplying
~a by (−1) yields the previously defined opposite of ~a. Other geometrically obvious properties
are (α + β)~a = α~a + β~a, and (αβ)~a = α(β~a). A more interesting property is distributivity
α(~a +~b) = α~a + α~b, which geometrically corresponds to similarity of triangles.

~a−|α|~a
|α|~a

~a

~b

~a +~b
α~a

α~b

α~a + α~b
α(~a +~b)

Generalization of the Vector Space concept

Vector addition and multiplication by a real number are the two key operations that define a Vector
Space, provided those operations satisfy the following 8 properties ∀~a, ~b in the vector space and
∀α, β in R.

Required vector addition properties:

~a +~b = ~b + ~a, (1)

~a + (~b + ~c) = (~a +~b) + ~c, (2)

~a +~0 = ~a = ~0 + ~a, (3)

~a + (−~a) = ~0. (4)
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Required scalar multiplication properties:

(α+ β)~a = α~a + β~a, (5)

(αβ)~a = α(β~a), (6)

α(~a +~b) = α~a + α~b. (7)

1 ~a = ~a, (8)

When these properties are used to define the vector space they are referred to as axioms, i.e. the
defining properties.

The vector space Rn: Consider the set of ordered n-tuplets of real numbers x ≡ (x1, x2, . . . , xn).
These could correspond to lists of student grades on a particular exam, for instance. What kind of
operations would we want to do on these lists of student grades? We’ll probably want to add several
grades for each student and we’ll probably want to rescale the grades. So the natural operations
on these n-tuplets are addition defined by adding the respective components:

x + y ≡ (x1 + y1, x2 + y2, . . . , xn + yn) = y + x. (9)

and multiplication by a real number α ∈ R defined as

αx ≡ (αx1, αx2, . . . , αxn). (10)

The set of n-tuplets of real numbers equipped with addition and multiplication by a real number as
just defined is an important vector space called Rn. The vector spaces R2 and R3 will be particularly
important to us as they’ll soon corresponds to the components of our arrow vectors. But we also
use Rn for very large n when studying systems of equations, for instance.

Exercises:

1. Show that addition and scalar multiplication of n-tuplets satisfy the 8 required properties
listed above.

2. Define addition and scalar multiplication of n-tuplets of complex numbers and show that all
8 properties are satisfied. That vector space is called Cn.

3. The set of real functions f(x) is also a vector space. Define addition in the obvious way:
f(x) + g(x) ≡ h(x) another real function, and scalar multiplication: αf(x) = F (x) yet
another real function. Show that all 8 properties are again satisfied.

4. Suppose you define addition of n-tuplets x = (x1, x2, . . . , xn) as usual but define scalar multi-
plication according to αx = (αx1, x2, · · · , xn), that is, only the first component is multiplied
by α. Which property is violated? What if you defined αx = (αx1, 0, · · · , 0), which property
would be violated?

5. From the 8 properties, show that (0)~a = ~0 and (−1)~a = (−~a), ∀~a, i.e. show that multiplica-
tion by the scalar 0 yields the neutral element for addition, and multiplication by −1 yields
the additive inverse.
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1.2 Bases and Components of a Vector

Addition and scalar multiplication of vectors allow us to define the concepts of linear combination,
basis, components and dimension. These concepts apply to any vector space.

A linear combination of vectors ~a and~b is an expression of the form α~a+β~b. This linear combination
yields another vector ~v. The set of all such vectors, obtained by taking any α, β ∈ R, is itself a
vector space (or more correctly a vector ‘subspace’ if ~a and ~b are two vectors in E3 for instance).
We say that ~a and ~b form a basis for that (sub)space. We also say that this is the (sub)space
spanned by ~a and~b. For a given vector ~v, the unique real numbers α and β such that ~v = α~a+β~b
are called the components of ~v with respect to the basis ~a, ~b.

~a

~b

α~a

β~b
~v = α~a + β~b

Linear Independence: The vectors ~a1,~a2, · · · ,~ak for some integer k are linearly independent
(L.I.) if the only way to have

α1~a1 + α2~a2 + · · ·+ αk~ak = 0

is for all the α’s to be zero:
α1 = α2 = · · · = αk = 0.

Dimension: The dimension of a vector space is the largest number of linearly independent vectors,
n say, in that space. A basis for that space consists of n linearly independent vectors. A vector ~v
has n components (some of them possibly zero) with respect to any basis in that space.

Examples:
• Two non-parallel vectors ~a and ~b in E2 are L.I. and these vectors form a basis for E2. Any given
vector ~v in E2 can be written as ~v = α~a + β~b, for a unique pair (α, β). ~v is the diagonal of the
parallelogram α~a, β~b. Three or more vectors in E2 are linearly dependent.
• Three non-coplanar vectors ~a, ~b and ~c in E3 are L.I. and those vectors form a basis for E3.
However 4 or more vectors in E3 are linearly dependent. Any given vector ~v can be expanded as
~v = α~a + β~b + γ~c, for a unique triplet of real numbers (α, β, γ). Make sketches to illustrate.

The 8 properties of addition and scalar multiplication imply that if two vectors ~u and ~v are
expanded with respect to the same basis ~a1, ~a2, ~a3 so

~u = u1~a1 + u2~a2 + u3~a3,

~v = v1~a1 + v2~a2 + v3~a3,

then
~u + ~v = (u1 + v1)~a1 + (u2 + v2)~a2 + (u3 + v3)~a3,

α~v = (αv1)~a1 + (αv2)~a2 + (αv3)~a3,

so addition and scalar multiplication are performed component by component and the triplets of
real components (v1, v2, v3) are elements of the vector space R3. A basis ~a1, ~a2, ~a3 in E3 provides
a one-to-one correspondence (mapping) between displacements ~v in E3 and triplets of real numbers
in R3

~v ∈ E3 ←→ (v1, v2, v3) ∈ R3.
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Exercises

1. Pick two vectors ~a, ~b and some arbitrary point A in the plane of your sheet of paper. If the

possible displacements from point A to point B are specified by
−−→
AB = α~a + β~b, sketch the

region where B can be if: (i) 0 ≤ α, β ≤ 1, (ii) |β| ≤ |α| and −1 ≤ α ≤ 1.

2. Given ~a, ~b, show that the set of all ~v = α~a + β~b, ∀α, β ∈ R is a vector space.

3. Show that the set of all vectors ~v = α~a +~b, ∀α ∈ R and fixed ~a, ~b is not a vector space.

4. If you defined addition of ordered pairs x = (x1, x2) as usual but scalar multiplication by
αx = (αx1, x2), would it be possible to represent any vector x as a linear combination of two
basis vectors a and b?

5. Show that the line segment connecting the middle points of two sides of a triangle is parallel
to and equal to half of the third side using methods of plane geometry and using vectors.

6. Show that the medians of a triangle intersect at the same point which is 2/3 of the way down
from the vertices along each median (a median is a line that connects a vertex to the middle
of the opposite side). Do this using both geometrical methods and vectors.

7. Given three point A, B, C, not co-linear, find a point O such that
−→
OA+

−−→
OB+

−−→
OC = 0. Show

that the line through A and O cuts BC at its mid-point. Deduce similar results for the other
sides of the triangle ABC and therefore that O is the point of intersection of the medians.

Sketch. [Hint:
−−→
OB =

−→
OA+

−−→
AB,

−−→
OC = · · · ]

8. Given four points A, B, C, D not co-planar, find a point O such that
−→
OA+

−−→
OB+

−−→
OC+

−−→
OD = 0.

Show that the line through A and O intersects the triangle BCD at its center of area. Deduce
similar results for the other faces and therefore that the medians of the tetrahedron ABCD,
defined as the lines joining each vertex to the center of area of the opposite triangle, all
intersect at the same point O which is 3/4 of the way down from the vertices along the
medians. Visualize.

9. Find a basis for Rn (consider the natural basis: e1 = (1, 0, · · · , 0), e2 = (0, 1, 0, · · · , 0), etc.)

10. Find a basis for Cn. What is the dimension of that space?

11. What is the dimension of the vector space of real continuous functions f(x) in 0 < x < 1?

12. What could be a basis for the vector space of ‘nice’ functions f(x) in (0, 1)? (i.e. 0 < x < 1)
(what’s a nice function? smooth functions are infinitely differentiable, that’s nice!)

Partial solutions to problems 5 and 6:

A

B

C

D

E

G

Let D and E be the midpoints of segments CB and CA.
Geometry: consider the triangles ABC and EDC. They are
similar (why?), so ED = AB/2 and those two segments are
parallel. Next consider triangles BAG and EDG. Those
are similar too (why?), so AG = 2GD and BG = 2GE,

done! Vector Algebra: Let
−→
CA = ~a and

−−→
CB = ~b, then (1)

−−→
ED = −~a/2 +~b/2 =

−−→
AB/2, done! (2)

−−→
AD = −~a +~b/2 and

−−→
BE = −~b + ~a/2. Next,

−−→
CG = ~a + α

−−→
AD = ~b + β

−−→
BE for

some α, β. Writing this equality in terms of ~a and ~b yields
α = β = 2/3, done! (Why does this imply that the line
through C and G cuts AB at its midpoint?).
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No need to introduce cartesian coordinates, that would be horrible and full of unnecessary algebra.

The vector solution refers to a vector basis: ~a =
−→
CA and ~b =

−−→
CB which is perfect for the problem,

although it is not orthogonal!

1.3 Dot (a.k.a. Scalar or Inner) Product

The geometric definition of the dot product of our arrow vectors is

~a ·~b ≡ |~a| |~b| cos θ, (11)

where 0 ≤ θ ≤ π is the angle between the vectors ~a and ~b when their tails coincide. The dot
product is a real number such that ~a ·~b = 0 iff ~a and ~b are orthogonal (perpendicular). The ~0
vector is considered orthogonal to any vector. The dot product of any vector with itself is the
square of its length ~a ·~a = |~a|2. The dot product is directly related to the perpendicular projections
of ~b onto ~a and ~a onto ~b. The latter are, respectively,

~a ~a

~b ~b
θ

â ·~b

~a · b̂

|~b| cos θ =
~a ·~b
|~a|

= ~b · â, |~a| cos θ =
~a ·~b
|~b|

= ~a · b̂, (12)

where â = ~a/|~a| and b̂ = ~b/|~b| are the unit vectors in the ~a and ~b directions, respectively. A unit
vector is a vector of length one |â| = 1 ∀~a 6= 0. Curiously, unit vectors do not have physical units,
that is if ~a is a displacement with (physical) units of length, then â is a pure direction vector. For
instance if ~a = “move northeast 3 miles” then |~a| = 3 miles, and â = “northeast”.
In physics, the work W done by a force ~F on a particle undergoing the displacement ~d is equal to
distance |~d| times the component of ~F in the direction of ~d, but that is equal to the total force
|~F | times the component of the displacement ~d in the direction of ~F . Both of these statements are
contained in the symmetric definition W = ~F · ~d, see exercise 1 below.

Parallel and Perpendicular Components

We often want to decompose a vector ~b into vector components, ~b‖ and ~b⊥, parallel and perpen-

dicular to a vector ~a, respectively, such that ~b = ~b‖ +~b⊥ with

~b‖

~b⊥
~b

~a

~b‖ = (~b · â) â =
~b · ~a
~a · ~a

~a

~b⊥ = ~b−~b‖ = ~b− (~b · â)â = ~b−
~b · ~a
~a · ~a

~a

(13)
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Properties of the dot product

The dot product has the following properties, most of which are immediate:

1. ~a ·~b = ~b · ~a,

2. (α~a) ·~b = ~a · (α~b) = α(~a ·~b),

3. ~a · (~b + ~c) = ~a ·~b + ~a · ~c,

4. ~a · ~a ≥ 0, ~a · ~a = 0 ⇔ ~a = ~0,

5. (~a ·~b)2 ≤ (~a · ~a) (~b ·~b) (Cauchy-Schwarz)

~b

~c

~b + ~c

~b · â ~c · â

To verify the distributive property ~a · (~b+~c) = ~a ·~b+~a ·~c geometrically, note that the magnitude
of ~a drops out so all we need to check is â ·~b + â · ~c = â · (~b + ~c) or in other words, that the
perpendicular projections of ~b and ~c onto a line parallel to ~a add up to the projection of ~b + ~c
onto that line. This is obvious from the figure. In general, ~a, ~b and ~c are not in the same plane.
To visualize the 3D case interpret â ·~b as the (signed) distance between two planes perpendicular
to ~a that pass through the tail and head of ~b and likewise for â · ~c and â · (~b + ~c). The result
follows directly since ~b, ~c and ~b+~c form a triangle. So the picture is the same but the dotted lines
represent planes seen from the sides and ~b, ~c, ~b + ~c are not in the plane of the paper, in general.

Exercises

1. A skier slides down an inclined plane with a total vertical drop of h, show that the work done
by gravity is independent of the slope. Use ~F and ~d’s and sketch the geometry of this result.

2. Visualize the solutions of ~a · ~x = α, where ~a and α are known.

3. Sketch ~c = ~a +~b then calculate ~c · ~c = (~a +~b) · (~a +~b) and deduce the ‘law of cosines’.

4. If ~n is a unit vector, show that ~a⊥ ≡ ~a− (~a · ~n)~n is orthogonal to ~n, ∀ ~a. Sketch.

5. If ~c = ~a +~b show that ~c⊥ = ~a⊥ +~b⊥ (defined in previous exercise). Interpret geometrically.

6. ~B is a magnetic field and ~v is the velocity of a particle. We want to decompose ~v = ~v⊥ +
~v‖ where ~v⊥ is perpendicular to the magnetic field and ~v‖ is parallel to it. Derive vector
expressions for ~v⊥ and ~v‖.

7. Show that the three normals dropped from the vertices of a triangle perpendicular to their
opposite sides intersect at the same point. [Hint: this is similar to problem 6 in section 1.2

but now
−−→
AD and

−−→
BE are defined by

−−→
AD ·

−−→
CB = 0 and

−−→
BE ·

−→
CA = 0 and the goal is to show

that
−−→
CG ·

−−→
AB = 0].

8. A and B are two points on a sphere of radius R specified by their longitude and latitude.
Find the shortest distance between A and B, traveling on the sphere. [If O is the center of

the sphere consider
−→
OA ·

−−→
OB to determine their angle].

9. Consider ~v = ~a+ t~b where t ∈ R. What is the minimum |~v| and for what t? Solve two ways:
geometrically and using calculus.
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1.4 Orthonormal basis

Given an arbitrary vector ~v and three non co-planar vectors ~a, ~b and ~c in E3, you can find the
three scalars α, β and γ such that

~v = α~a + β~b + γ~c

by a geometric construction (sect. 1.2). The scalars α, β and γ are called the components of ~v
in the basis ~a, ~b, ~c. Finding those components is much simpler if the basis is orthogonal, i.e.
~a · ~b = ~b · ~c = ~c · ~a = 0. In that case, take the dot product of both sides of the equation
~v = α~a + β~b + γ~c with each of the 3 basis vectors and show that

α =
~a · ~v
~a · ~a

, β =
~b · ~v
~b ·~b

, γ =
~c · ~v
~c · ~c

.

An orthonormal basis is even better. That’s a basis for which the vectors are mutually orthogonal
and of unit norm. Such a basis is often denoted1 ~e1, ~e2, ~e3. Its compact definition is

~ei · ~ej = δij (14)

where i, j = 1, 2, 3 and δij is the Kronecker symbol, δij = 1 if i = j and 0 if i 6= j.
The components of a vector ~v with respect to the orthonormal basis ~e1, ~e2, ~e3 in E3 are the real
numbers v1, v2, v3 such that 

~v = v1~e1 + v2~e2 + v3~e3 ≡
3∑
i=1

vi~ei

vi = ~ei · ~v, ∀i = 1, 2, 3.

(15)

If two vectors ~a and ~b are expanded in terms of ~e1, ~e2, ~e3, i.e.

~a = a1~e1 + a2~e2 + a3~e3, ~b = b1~e1 + b2~e2 + b3~e3,

use the properties of the dot product and the orthonormality of the basis to show that

~a ·~b = a1b1 + a2b2 + a3b3. (16)

B Show that this formula is valid only for orthonormal bases.
One remarkable property of this formula is that its value is independent of the orthonormal basis.
The dot product is a geometric property of the vectors ~a and ~b, independent of the basis. This
is obvious from the geometric definition (11) but not from its expression in terms of components
(16). If ~e1, ~e2, ~e3 and ~e1

′, ~e2
′, ~e3

′ are two distinct orthogonal bases then

~a = a1~e1 + a2~e2 + a3~e3 = a′1~e1
′ + a′2~e2

′ + a′3~e3
′

but, in general, the components in the two bases are distinct: a1 6= a′1, a2 6= a′2, a3 6= a′3, and

likewise for another vector ~b, yet

~a ·~b = a1b1 + a2b2 + a3b3 = a′1b
′
1 + a′2b

′
2 + a′3b

′
3.

The simple algebraic form of the dot product is invariant under a change of orthonormal basis.

1Note about notation: Forget about the notation ~i, ~j, ~k. This is old 19th century notation, it is unfortunately
still very common in elementary courses but that old notation will get in the way if you stick to it. We will NEVER
use ~i, ~j, ~k, instead we will use ~e1, ~e2, ~e3 or ~ex, ~ey, ~ez to denote a set of three orthonormal vectors in 3D euclidean
space. We will soon use indices i, j and k (next line already!). Those indices are positive integers that can take
all the values from 1 to n, the dimension of the space. We spend most of our time in 3D space, so most of the time
the possible values for these indices i, j and k are 1, 2 and 3. We will use those indices a lot!. They should not be
confused with those old orthonormal vectors ~i, ~j, ~k from elementary calculus.
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Exercises

1. If ~w =
∑3

i=1wi~ei, calculate ~ej · ~w using
∑

notation and (14).

2. Why is not true that ~ei ·
∑3

i=1wi~ei =
∑3

i=1wi(~ei · ~ei) =
∑3

i=1wiδii = w1 + w2 + w3?

3. If ~v =
∑3

i=1 vi~ei and ~w =
∑3

i=1wi~ei, calculate ~v · ~w using
∑

notation and (14).

4. If ~v =
∑3

i=1 vi~ai and ~w =
∑3

i=1wi~ai, where the basis ~ai, i = 1, 2, 3, is not orthonormal,
calculate ~v · ~w.

5. Calculate (i)
∑3

j=1 δijaj , (ii)
∑3

i=1

∑3
j=1 δijajbi, (iii)

∑3
j=1 δjj .

Definition of dot product for Rn
The geometric definition of the dot product (11) is great for oriented line segments as it emphasizes
the geometric aspects, but the algebraic formula (16) is very useful for calculations. It’s also the
way to define the dot product for other vector spaces where the concept of ‘angle’ between vectors
may not be obvious e.g. what is the angle between the vectors (1,2,3,4) and (4,3,2,1) in R4?! The
dot product (a.k.a. scalar product or inner product) of the vectors x and y in Rn is defined as
suggested by (16):

x · y ≡ x1y1 + x2y2 + · · ·+ xnyn. (17)

Verify that this definition satisfies the first 4 properties of the dot product. To show the Cauchy-
Schwarz property, you need a bit of Calculus and a classical trick: consider v = x + λy, then by
prop 4 of the dot product: (x+λy) · (x+λy) ≥ 0, and by props 1,2,3, F (λ) ≡ (x+λy) · (x+λy) =
λ2y · y + 2λx · y + x · x. For given, but arbitrary, x and y, this is a quadratic polynomial in λ.
That polynomial F (λ) has a single minimum at λ = −(x · y)/(y · y). Find that minimum value of
F (λ) and deduce the Cauchy-Schwarz inequality. Once we know that the definition (17) satisfies
Cauchy-Schwarz, (x·y)2 ≤ (x·x) (y ·y), we can define the length of a vector by |x| = (x·x)1/2 (this
is called the Euclidean length since it corresponds to length in Euclidean geometry by Pythagoras’s
theorem) and the angle θ between two vectors in Rn by cos θ = (x ·y)/(|x| |y|). A vector space for
which a dot (or inner) product is defined is called a Hilbert space (or an inner product space).

B So what is the angle between (1, 2, 3, 4) and (4, 3, 2, 1)?

B Can you define a dot product for the vector space of real functions f(x)?

The bottom line is that for more complex vector spaces, the dot (or scalar or inner) product is a
key mathematical construct that allows us to generalize the concept of ‘angle’ between vectors and,
most importantly, to define ‘orthogonal vectors’.

B Find a vector orthogonal to (1, 2, 3, 4). Find all the vectors orthogonal to (1, 2, 3, 4).

B Decompose (4,2,1,7) into the sum of two vectors one of which is parallel and the other perpen-
dicular to (1, 2, 3, 4).

B Show that cosnx with n integer, is a set of orthogonal functions on (0, π). Find formulas for the
components of a function f(x) in terms of that orthogonal basis. In particular, find the components
of sinx in terms of the cosine basis in that (0, π) interval.

Norm of a vector
The norm of a vector, denoted ‖a‖, is a positive real number that defines its size or ‘length’ (but
not in the sense of the number of its components). For displacement vectors in Euclidean spaces,
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the norm is the length of the displacement, ‖~a‖ = |~a| i.e. the distance between point A and B

if
−−→
AB = a. The following properties are geometrically straightforward for length of displacement

vectors:

1. ‖a‖ ≥ 0 and ‖a‖ = 0⇔ a = ~0,

2. ‖αa‖ = |α| ‖a‖,

3. ‖a + b‖ ≤ ‖a‖+ ‖b‖. (triangle inequality)

Draw the triangle formed by ~a, ~b and ~a +~b to see why the latter is called the triangle inequality.
For more general vector spaces, these properties become the defining properties (axioms) that a
norm must satisfy. A vector space for which a norm is defined is called a Banach space.

Definition of norm for Rn
For other types of vector space, there are many possible definitions for the norm of a vector as long
as those definitions satisfy the 3 norm properties. In Rn, the p-norm of vector ~x is defined by the
positive number

‖x‖p ≡
(
|x1|p + |x2|p + · · ·+ |xn|p

)1/p
, (18)

where p ≥ 1 is a real number. Commonly used norms are the 2-norm ‖x‖2 which is the square root
of the sum of the squares, the 1-norm ‖x‖1 (sum of absolute values) and the infinity norm, ‖x‖∞,
defined as the limit as p→∞ of the above expression.
Note that the 2-norm ‖x‖2 = (x · x)1/2 and for that reason is also called the Euclidean norm. In
fact, if a dot product is defined, then a norm can always be defined as the square root of the dot
product. In other words, every Hilbert space is a Banach space, but the converse is not true.

B Show that the infinity norm ‖x‖∞ = maxi |xi|.

B Show that the p-norm satisfies the three norm properties for p = 1, 2,∞.

B Define a norm for Cn.

B Define the 2-norm for real functions f(x) in 0 < x < 1.

1.5 Cross (a.k.a. Vector or Area) Product

The cross product is a very useful operation for physical applications (mechanics, electromag-
netism), but it is particular to 3D space. The cross product of two vectors ~a, ~b is the vector
denoted ~a × ~b that is (1) orthogonal to both ~a and ~b, (2) has magnitude equal to the area of
the parallelogram with sides ~a and ~b, (3) has direction determined by the right-hand rule (or the
cork-screw rule), i.e.

(~a×~b) · ~a = (~a×~b) ·~b = 0,

|~a×~b| = |~a| |~b| sin θ = area of parallelogram,

~a,~b,~a×~b is right-handed,

(19)

where θ is the angle between ~a and ~b as defined for the dot product. (Is sin θ ≥ 0?) The following
figure illustrates the cross-product with a perspective view (left) and a top view (right), with ~a×~b
out of the paper in the top view.
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~b× ~a

~a×~b

~a
~b

~a×~b ~a

~b ~b⊥

~a⊥

θ

~a×~b = ~a⊥ ×~b = ~a×~b⊥ (20)

where ~a⊥ = ~a−(~a·b̂)b̂ is the vector component of ~a perpendicular to~b and likewise~b⊥ = ~b−(~b·â)â
is the vector component of~b perpendicular to ~a (so the meaning of ⊥ is relative). The cross-product
has the following properties:

1. ~a×~b = −~b× ~a, (anti-commutativity) ⇒ ~a× ~a = 0,

2. (α~a)×~b = ~a× (α~b) = α(~a×~b),

3. ~c× (~a +~b) = (~c× ~a) + (~c×~b)

So we manipulate the cross product as we’d expect except for the anti-commutativity, which is a
big difference from our other elementary products! The first 2 properties are geometrically obvious
from the definition. To show the third property (distributivity) let ~c = |~c|ĉ and get rid of |~c| by
property 2. All three cross products give vectors perpendicular to ~c and furthermore from (20) we
have ĉ × ~a = ĉ × ~a⊥, ĉ ×~b = ĉ ×~b⊥ and ĉ × (~a +~b) = ĉ × (~a +~b)⊥, where ⊥ means vector
component perpendicular to ĉ, that is ~a⊥ = ~a − (~a · ĉ)ĉ, etc. So cross-products with ~c eliminate
the components parallel to ~c and all the action is in the plane perpendicular to ~c.

(~a +~b)⊥

~b⊥~a⊥

ĉ

ĉ× (~a +~b)

ĉ×~b

ĉ×~b

ĉ× ~a

To visualize the distributivity property it suffices to look
at that plane from the top, with ĉ pointing out of the pa-
per/screen. Then a cross product with ĉ is a rotation of the
perpendicular components by π/2 counterclockwise. Since ~a,
~b and ~a +~b form a triangle, their perpendicular projections
~a⊥, ~b⊥ and (~a + ~b)⊥ form a triangle and therefore ĉ × ~a,
ĉ×~b and ĉ× (~a +~b) also form a triangle since each of them
is simply a counterclockwise rotation by π/2 of ~a⊥, ~b⊥ and
(~a +~b)⊥, respectively. This demonstrates distributivity.

Orientation of Bases

If we pick an arbitrary unit vector ~e1, then a unit vector ~e2 orthogonal to ~e1, then there are two
possible unit vectors ~e3 orthogonal to both ~e1 and ~e2. One choice gives a right-handed basis (i.e.
~e1 in right thumb direction, ~e2 in right index direction and ~e3 in right major direction). The
other choice gives a left-handed basis. These two types of bases are mirror images of each other as
illustrated in the following figure, where ~e1

′ = ~e1 point straight out of the paper (or screen).
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~e2
′

~e3
′

~e1
′

~e2

~e3

~e1

Left-handed Right-handed
mirror

This figure reveals an interesting subtlety of the cross product. For this particular choice of left
and right handed bases (other arrangements are possible of course), ~e1

′ = ~e1 and ~e2
′ = ~e2 but

~e3
′ = −~e3 so ~e1 × ~e2 = ~e3 and ~e1

′ × ~e2
′ = ~e3 = −~e3′. This indicates that the mirror image of

the cross-product is not the cross-product of the mirror images. On the opposite, the mirror image
of the cross-product ~e3

′ is minus the cross-product of the images ~e1
′ × ~e2

′. We showed this for
a special case, but this is general, the cross-product is not invariant under reflection, it changes
sign. Physical laws should not depend on the choice of basis, so this implies that they should not
be expressed in terms of an odd number of cross products. When we write that the velocity of a
particle is ~v = ~ω×~r, ~v and ~r are ‘good’ vectors (reflecting as they should under mirror symmetry)
but ~ω is not quite a true vector, it is a pseudo-vector. It changes sign under reflection. That is
because rotation vectors are themselves defined according to the right-hand rule, so an expression
such as ~ω × ~r actually contains two applications of the right hand rule. Likewise in the Lorentz
force ~F = q~v × ~B, ~F and ~v are good vectors, but since the definition involves a cross-product, it
must be that ~B is a pseudo-vector. Indeed ~B is itself a cross-product so the definition of ~F actually
contains two cross-products.
The orientation (right-handed or left-handed) did not matter to us before but, now that we’ve
defined the cross-product with the right-hand rule, we’ll typically choose right-handed bases. We
don’t have to, geometrically speaking, but we need to from an algebraic point of view otherwise
we’d need two sets of algebraic formula, one for right-handed bases and one for left-handed bases.
In terms of our right-handed cross product definition, we can define a right-handed basis by

~e1 × ~e2 = ~e3, (21)

then deduce geometrically
~e2 × ~e3 = ~e1, ~e3 × ~e1 = ~e2, (22)

~e2 × ~e1 = −~e3, ~e1 × ~e3 = −~e2, ~e3 × ~e2 = −~e1. (23)

Note that (22) are cyclic rotations of the basis vectors in (21), i.e. (~e1,~e2,~e3) → (~e2,~e3,~e1) →
(~e3,~e1,~e2). The orderings of the basis vectors in (23) do not correspond to cyclic rotations. For
3 elements, a cyclic rotation corresponds to an even number of permutations. For instance to go
from (~e1,~e2,~e3) to (~e2,~e3,~e1) we can first permute (switch) ~e1 ↔ ~e2 to obtain (~e2,~e1,~e3) then
permute ~e1 and ~e3. The concept of even and odd number of permutations is more general. But for
three elements it is useful to think in terms of cyclic and acyclic permutations.

If we expand ~a and ~b in terms of the right-handed ~e1, ~e2, ~e3, then apply the 3 properties of the
cross-product i.e. in compact summation form

~a =
3∑
i=1

ai~ei, ~b =
3∑
j=1

bj~ej , ⇒ ~a×~b =
3∑
i=1

3∑
j=1

aibj (~ei × ~ej),
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we obtain
~a×~b = (a2b3 − a3b2)~e1 + (a3b1 − a1b3)~e2 + (a1b2 − a2b1)~e3. (24)

Verify this result explicitly. What would the formula be if the basis was left-handed?
That expansion of the cross product with respect to a right-handed orthonormal basis (24) is often
remembered using the formal determinant (i.e. this is not a true determinant, it’s just convenient
mnemonics) ∣∣∣∣∣∣

~e1 ~e2 ~e3
a1 a2 a3
b1 b2 b3

∣∣∣∣∣∣ .
Double vector product (‘Triple vector product’)2

I Exercise: Visualize the vector (~a×~b)×~a. Sketch it. What are its geometric properties? What
is its magnitude?
Double vector products occur frequently in applications (e.g. angular momentum of a rotating
body) directly or indirectly (recall above discussion about mirror reflection and cross-products in
physics). They have simple expressions

(~a×~b)× ~c = (~a · ~c)~b− (~b · ~c)~a,

~a× (~b× ~c) = (~a · ~c)~b− (~a ·~b)~c.
(25)

One follows from the other after some manipulations and renaming of vectors, but we can remem-
ber both at once as: middle vector times dot product of the other two minus other vector within
parentheses times dot product of the other two.3

Let’s show this identity for ~v = (~a×~b)× ~c. First, (~a×~b) is ⊥ to ~a and ~b, and ~v is ⊥ to (~a×~b),
therefore ~v is in the ~a, ~b plane and can be written ~v = α~a + β~b for some scalars α and β. Second,
~v is also ⊥ to ~c, so ~v ·~c = α(~a ·~c) + β(~b ·~c) = 0, therefore α = µ(~b ·~c) and β = −µ(~a ·~c) for some
scalar µ. Thus ~v = µ[(~b ·~c)~a− (~a ·~c)~b] which is almost (25) but we still need to show that µ = −1.

~c⊥

~b

~a

~v

~a×~b

ϕ

Let ~c = ~c‖ + ~c⊥ with ~c‖ parallel to ~a×~b, hence perpendicular to

both ~a and~b. Then ~v = (~a×~b)×~c = (~a×~b)×~c⊥ and ~a ·~c = ~a ·~c⊥
and ~b ·~c = ~b ·~c⊥. So all the action is in the plane perpendicular to
~a×~b = |~a×~b| n̂. To determine µ in ~v = µ(~b ·~c⊥)~a− µ(~a ·~c⊥)~b,
consider ~b × ~v = −µ (~b · ~c⊥) (~a ×~b) = −µ|~b| |~c⊥| cos(π2 − ϕ) (~a ×
~b) = −µ|~b| |~c⊥| sinϕ (~a × ~b), but by direct calculation ~b × ~v =
|~b||~v| sinϕ n̂ = |~b| |~a×~b| |~c⊥| sinϕ n̂ = |~b| |~c⊥| sinϕ(~a ×~b) (with
ϕ positive counterclockwise about n̂), hence µ = −1.

Exercises

1. Show that |~a×~b|2 + (~a ·~b)2 = |~a|2 |~b|2, ∀~a,~b.

2. If three vectors satisfy ~a + ~b + ~c = 0, show algebraically and geometrically that ~a × ~b =
~b×~c = ~c×~a. Deduce the ‘law of sines’ relating the sines of the angles of a triangle and the
lengths of its sides.

2The double vector product is often called ‘triple vector product’, there are 3 vectors but only 2 vector products!
3This is more useful than the confusing ‘BAC-CAB’ rule for remembering the 2nd. Try applying the BAC-CAB

mnemonic to (~b× ~c)× ~a for confusing fun!
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3. Show by vector algebra and geometry that all the vectors ~x such that ~a × ~x = ~b have the
form

~x = α~a +
~b× ~a

‖~a‖2
, ∀α ∈ R

4. Show the Jacobi identity: ~a× (~b× ~c) +~b× (~c× ~a) + ~c× (~a×~b) = 0.

5. If ~n is any unit vector, show algebraically and geometrically that any vector ~a can be de-
composed as

~a = (~a · ~n)~n + ~n× (~a× ~n) ≡ ~a‖ + ~a⊥. (26)

The first component is parallel to ~n, the second is perpendicular to ~n.

6. A particle of charge q moving at velocity ~v in a magnetic field ~B experiences the Lorentz
force ~F = q~v × ~B. Show that there is no force in the direction of the magnetic field.

7. A left-handed basis ~e1
′, ~e2

′, ~e3
′, is defined by ~ei

′ · ~ej ′ = δij and ~e1
′ × ~e2

′ = −~e3′. Show that
(~ei

′×~ej
′) ·~ek ′ has the opposite sign to the corresponding expression for a right-handed basis,

∀i, j, k (the definition of the cross-product remaining its right-hand rule self). Thus deduce
that the formula for the components of the cross-product in the left handed basis would all
change sign.

8. Prove (25) using the right-handed orthonormal basis ~e1 = ~a/|~a|, ~e3 = (~a ×~b)/|~a ×~b| and
~e2 = ~e3 ×~e1. Then ~a = a1~e1, ~b = b1~e1 + b2~e2, ~c = c1~e1 + c2~e2 + c3~e3. Visualize and explain
why this is a general result and therefore a proof of the double cross product identity.

9. Prove (25) using the right-handed orthonormal basis ~e1 = ~c⊥/|~c⊥|, ~e3 = (~a×~b)/|~a×~b| and
~e2 = ~e3×~e1. In that basis ~a = a1~e1+a2~e2 and~b = b1~e1+b2~e2 but what is ~c? Show by direct
calculation that ~a ×~b = (a1b2 − a2b1)~e3 and ~v = |~c⊥|(a1b2 − a2b1)~e2 = |~c⊥|a1~b − |~c⊥|b1~a.
Why is this (~a · ~c)~b− (~b · ~c)~a and thus a proof of the identity?

1.6 Indicial notation

Levi-Civita (a.k.a. alternating or permutation) symbol

We have used the Kronecker symbol (14) to express all the dot products ~ei · ~ej = δij in a very
compact form. There is a similar symbol, εijk, the Levi-Civita or alternating symbol, defined as

εijk =


1 if (i, j, k) is an even permutation of (1, 2, 3),
−1 if (i, j, k) is an odd permutation of (1, 2, 3),

0 otherwise,
(27)

or, explicitly: ε123 = ε231 = ε312 = 1 and ε213 = ε132 = ε321 = −1, all other εijk = 0. Recall that for
3 elements an even permutation is the same as a cyclic permutation, therefore εijk = εjki = εkij ,
∀i, j, k (why?). The εijk symbol provides a compact expression for the components of the cross-
product of right-handed basis vectors:

(~ei × ~ej) · ~ek = εijk. (28)

but since this is the k-component of (~ei × ~ej) we can also write

(~ei × ~ej) =
3∑

k=1

εijk~ek. (29)
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Note that there is only one non-zero term in the latter sum (but then, why can’t we drop the sum?).
Verify this result for yourself.

1.6.1 Sigma notation, free and dummy indices

The expansion of vectors ~a and ~b in terms of basis ~e1,~e2,~e3, ~a = a1~e1 + a2~e2 + a3~e3 and ~b =
b1~e1 + b2~e2 + b3~e3, can be written compactly using the sigma (Σ) notation

~a =
3∑
i=1

ai~ei, ~b =
3∑
i=1

bi~ei. (30)

We have introduced the Kronecker symbol δij and the Levi-Civita symbol εijk in order to write
and perform our basic vector operations such as dot and cross products in compact forms, when
the basis is orthonormal and right-handed, for instance using (14) and (29)

~a ·~b =

3∑
i=1

3∑
j=1

aibj ~ei · ~ej =
3∑
i=1

3∑
j=1

aibjδij =
3∑
i=1

aibi (31)

~a×~b =
3∑
i=1

3∑
j=1

aibj ~ei × ~ej =
3∑
i=1

3∑
j=1

3∑
k=1

aibjεijk ~ek (32)

Note that i and j are dummy or summation indices in the sums (30) and (31), they do not have
a specific value, they have all the possible values in their range. It is their place in the particular
expression and their range that matters, not their name

~a =
3∑
i=1

ai~ei =
3∑
j=1

aj~ej =
3∑

k=1

ak~ek = · · · 6=
3∑

k=1

ak~ei (33)

Indices come in two kinds, the dummies and the free. Here’s an example

~ei · (~a ·~b)~c =

 3∑
j=1

ajbj

 ci, (34)

here j is a dummy summation index, but i is free, we can pick for it any value 1, 2, 3. Freedom
comes with constraints. If we use i on the left-hand side of the equation, then we have no choice,
we must use i for ci on the right hand side. By convention we try to use i, j, k, l, m, n, to denote
indices, which are positive integers. Greek letters are sometimes used for indices.
Mathematical operations impose some naming constraints however. Although, we can use the same
index name, i, in the expansions of ~a and ~b, when they appear separately as in (30), we cannot use
the same index name if we multiply them as in (31) and (32). Bad things will happen if you do, for
instance

~a×~b =

(
3∑
i=1

ai~ei

)
×

(
3∑
i=1

bi~ei

)
=

3∑
i=1

aibi ~ei × ~ei = 0 (WRONG!) (35)
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1.6.2 Einstein’s summation convention

While he was developing the theory of general relativity, Einstein noticed that many of the sums
that occur in calculations involve terms where the summation index appears twice. For example, i
appears twice in the single sums in (30), i and j appear twice in the double sum in (31) and i, j
and k each appear twice in the triple sum in (32). To facilitate such manipulations he dropped the
Σ signs and adopted the summation convention that a repeated index implicitly denotes
a sum over all values of that index. In a letter to a friend he wrote “I have made a great
discovery in mathematics; I have suppressed the summation sign every time that the summation
must be made over an index which occurs twice”. Thus with Einstein’s summation convention we
write

~a = ai~ei, ~b = bj~ej , ~a ·~b = aibi, ~a×~b = εijkaibj~ek, (36)

and any repeated index implies a sum over all values of that index. This is a very useful and widely
used notation but you have to use it with care and there are cases where it cannot be used. Indices
can never be repeated more than twice, if they are, that’s probably a mistake as in (35), if not then
you are out of luck and need to use Σ’s or invent your own notation.
A few common operations in the summation convention: We love to see a δij involved in a sum
since this collapses that sum. This is called the substitution rule, if δij appears in a sum, we can
forget about it and eliminate the summation index, for example

aiδij = aj , δklδkl = δkk = δll = 3, δijεijk = εiik = 0 (37)

note the second result δkk = 3 because k is repeated, so there is a sum over all values of k and
δkk = δ11 + δ22 + δ33. The last result is because εijk vanishes whenever two indices are the same.
That last expression δijεijk involves a double sum over i and over j. The δij collapses one of those
sums. It doesn’t matter which index we choose to eliminate since both are dummy indices. Let’s
compute the l component of ~a×~b from (36). We pick l because i, j and k are already taken. The
l component is

~el · (~a×~b) = εijkaibj~ek · ~el = εijkaibjδkl = εijlaibj = εlmnambn (38)

what happened on that last step? first, εijk = εkij because (i, j, k) to (k, i, j) is a cyclic permutation
which corresponds to an even number of permutation in space of odd dimension (dimension 3, here)
and the value of εijk does not change under even permutations. Then i and j are dummies and
we renamed them m and n respectively being careful to keep the order. The final result is worth
memorizing: if ~c = ~a×~b, the l component of ~c is cl = εlmnambn, or switching indices to i, j, k

~c = ~a×~b ⇐⇒ ci = εijkajbk ⇐⇒ ~c = ~ei εijkajbk. (39)

In the spirit of no pain-no gain, let’s write the double cross product identity (~a ×~b) × ~c in this
indicial notation. Let ~v = ~a×~b then the i component of the double cross product ~v×~c is εijkvjck.

Now we need the j component of ~v = ~a ×~b. Since i and k are taken we use l, m as new dummy
indices, and we have vj = εjlmalbm. So the i component of the double cross product (~a×~b)×~c is

εijkεjlmalbmck. (40)

Note that j, k, l and m are repeated, so this expression is a quadruple sum! According to our
double cross product identity it should be equal to the i component of (~a · ~c)~b − (~b · ~c)~a for any
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~a, ~b, ~c. We want the i component of the latter expression since i is a free index in (40), that i
component is

(ajcj)bi − (bjcj)ai (41)

(wait! isn’t j repeated 4 times? no, it’s not. It’s repeated twice in separate terms so this is a
difference of two sums over j). Since (40) and (41) are equal to each other for any ~a, ~b, ~c, this
should be telling us something about εijk, but to extract that out we need to rewrite (41) in the
form albmck. How? by making use of our ability to rename dummy variables and adding variables
using δij . Let’s look at the first term in (41), (ajcj)bi, here’s how to write it in the form alckbm as
in (40):

(ajcj)bi = (akck)bi = (δlkalck)(δimbm) = δlkδimalckbm. (42)

Do similar manipulations to the second term in (41) to obtain (bjcj)ai = δilδkmalckbm and

εijkεjlmalbmck = (δlkδim − δilδkm)alckbm. (43)

Since this equality holds for any al, ck, bm, we must have εijkεjlm = (δlkδim − δilδkm). That’s true
but it’s not written in a nice way so let’s clean it up to a form that’s easier to reconstruct. First
note that εijk = εjki since εijk is invariant under a cyclic permutation of its indices. So our identity
becomes εjkiεjlm = (δlkδim − δilδkm). We’ve done that flipping so the summation index j is in first
place in both ε factors. Now we prefer the lexicographic order (i, j, k) to (j, k, i) so let’s rename all
the indices being careful to rename the correct indices on both sides. This yields

εijkεilm = δjlδkm − δjmδkl (44)

This takes some digesting. Go through it carefully again. And again, as many times as it takes.
The identity (44) is actually pretty easy to remember and verify. First, εijkεilm is a sum over
i but there is never more than one non-zero term (why?). Second, the only possible values for
that expression are +1, 0 and −1 (why?). The only way to get 1 is to have (j, k) = (l,m) with
j = l 6= k = m (why?), but in that case the right hand side of (44) is also 1 (why?). The only way
to get −1 is to have (j, k) = (m, l) with j = m 6= k = l (why?), but in that case the right hand
side is −1 also (why?). Finally, to get 0 we need j = k or l = m and the right-hand side again
vanishes in either case. For instance, if j = k then we can switch j and k in one of the terms and
δjlδkm − δjmδkl = δjlδkm − δkmδjl = 0.
Formula (44) has a generalization that does not include summation over one index

εijkεlmn =δilδjmδkn + δimδjnδkl + δinδjlδkm

−δimδjlδkn − δinδjmδkl − δilδjnδkm
(45)

note that the first line correspond to (i, j, k) and (l,m, n) matching up to cyclic rotations, while
the second line corresponds to (i, j, k) matching with an odd (acyclic) rotation of (l,m, n).

Exercises

1. Explain why εijk = εjki = −εjik for any integer i, j, k.

2. Using (28) and Einstein’s notation show that (~a×~b) ·~ek = εijkaibj and (~a×~b) = εijkaibj ~ek =
εijkajbk ~ei.

3. Show that εijkεljk = 2δil by direct deduction and by application of (44).

4. Deduce (44) from (45).
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1.7 Mixed (or ‘Box’) product and Determinant

A mixed product4 of three vectors has the form (~a × ~b) · ~c, it involves both a cross and a dot
product. The result is a scalar. We have already encountered mixed products (e.g. eqn. (28)) but
their geometric and algebraic properties are so important that they merit their own subsection.

(~a×~b) · ~c = (~b× ~c) · ~a = (~c× ~a) ·~b =

~a · (~b× ~c) = ~b · (~c× ~a) = ~c · (~a×~b) =

±volume of the parallelepiped spanned by ~a,~b,~c

(46)

~a

~b

~c

~a×~b

Take ~a and ~b as the base of the parallelepiped then ~a ×~b is perpendicular to the base and has
magnitude equal to the base area. The height is ẑ · ~c where ẑ is the unit vector perpendicular to
the base, i.e. parallel to ~a ×~b. So the volume is (~a ×~b) · ~c. Signwise, (~a ×~b) · ~c > 0 if ~a, ~b and
~c, in that order, form a right-handed basis (not orthogonal in general), and (~a ×~b) · ~c < 0 if the
triplet is left-handed. Taking ~b and ~c, or ~c and ~a, as the base, you get the same volume and sign.
The dot product commutes, so (~b× ~c) · ~a = ~a · (~b× ~c), yielding the identity

(~a×~b) · ~c = ~a · (~b× ~c). (47)

We can switch the dot and the cross without changing the result. We have shown (46) geometrically.
The properties of the dot and cross products yield many other results such as (~a×~b)·~c = −(~b×~a)·~c,
etc. We can collect all these results as follows.
A mixed product is one form of a scalar function of three vectors called the determinant

(~a×~b) · ~c ≡ det(~a,~b,~c), (48)

whose value is the signed volume of the parallelepiped with sides ~a, ~b, ~c. The determinant has
three fundamental properties

1. it changes sign if any two vectors are permuted, e.g.

det(~a,~b,~c) = −det(~b,~a,~c) = det(~b,~c,~a), (49)

2. it is linear in any of its vectors e.g. ∀ α, ~d,

det(α~a + ~d,~b,~c) = α det(~a,~b,~c) + det(~d,~b,~c), (50)

4The mixed product is often called ‘triple scalar product’.
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3. if the triplet ~e1, ~e2, ~e3 is right-handed and orthonormal then

det(~e1,~e2,~e3) = 1. (51)

Deduce these from the properties of the dot and cross products as well as geometrically. Property
(50) is a combination of the distributivity properties of the dot and cross products with respect to
vector addition and multiplication by a scalar. For example,

det(α~a + ~d,~b,~c) = (α~a + ~d) · (~b× ~c) =α
(
~a · (~b× ~c)

)
+ ~d · (~b× ~c)

=α det(~a,~b,~c) + det(~d,~b,~c).

From these three properties, you deduce easily that the determinant is zero if any two vectors are
identical (from prop 1), or if any vector is zero (from prop 2 with α = 1 and ~d = ~0), and that the
determinant does not change if we add a multiple of one vector to another, for example

det(~a,~b,~a) = 0,

det(~a,~0,~c) = 0,

det(~a + β~b,~b,~c) = det(~a,~b,~c).

(52)

Geometrically, this last one corresponds to a shearing of the parallelepiped, with no change in
volume or orientation. One key application of determinants is

det(~a,~b,~c) 6= 0 ⇔ ~a,~b,~c form a basis. (53)

If det(~a,~b,~c) = 0 then either one of the vectors is zero or they are co-planar and ~a, ~b, ~c cannot
provide a basis for E3. This is how the determinant is introduced in elementary linear algebra.
But the determinant is so much more! It ‘determines’ the volume of the parallelepiped and its
orientation!
The 3 fundamental properties fully specify the determinant as explored in exercises 5, 6 below. If
the vectors are expanded in terms of a right-handed orthonormal basis, i.e. ~a = ai~ei, ~b = bj~ej ,
~c = ck~ek (summation convention), then we obtain the following formula for the determinant in
terms of the vector components

det(~a,~b,~c) = (~a×~b) · ~c = aibjck(~ei × ~ej) · ~ek = εijk aibjck. (54)

Expanding that expression

εijk aibjck = a1b2c3 + a2b3c1 + a3b1c2 − a2b1c3 − a3b2c1 − a1b3c2. (55)

we recognize the familiar algebraic determinants

det(~a,~b,~c) = εijk aibjck =

∣∣∣∣∣∣
a1 a2 a3
b1 b2 b3
c1 c2 c3

∣∣∣∣∣∣ =

∣∣∣∣∣∣
a1 b1 c1
a2 b2 c2
a3 b3 c3

∣∣∣∣∣∣ . (56)

Note that it does not matter whether we put the vector components along rows or columns. This
is a non-trivial and important property of determinants. (see section on matrices).
This familiar determinant has the same three fundamental properties (49), (50), (51) of course
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1. it changes sign if any two columns (or rows) are permuted, e.g.∣∣∣∣∣∣
a1 b1 c1
a2 b2 c2
a3 b3 c3

∣∣∣∣∣∣ = −

∣∣∣∣∣∣
b1 a1 c1
b2 a2 c2
b3 a3 c3

∣∣∣∣∣∣ , (57)

2. it is linear in any of its columns (or rows) e.g. ∀ α, (d1, d2, d3),∣∣∣∣∣∣
αa1 + d1 b1 c1
αa2 + d2 b2 c2
αa3 + d3 b3 c3

∣∣∣∣∣∣ = α

∣∣∣∣∣∣
a1 b1 c1
a2 b2 c2
a3 b3 c3

∣∣∣∣∣∣+

∣∣∣∣∣∣
d1 b1 c1
d2 b2 c2
d3 b3 c3

∣∣∣∣∣∣ , (58)

3. finally, the determinant of the natural basis is∣∣∣∣∣∣
1 0 0
0 1 0
0 0 1

∣∣∣∣∣∣ = 1, (59)

You deduce easily from these three properties that the det vanishes if any column (or row) is
zero or if any two columns (or rows) is a multiple of another, and that the determinant does not
change if we add to one column (row) a linear combination of the other columns (rows). These
properties allow us to calculate determinants by successive shearings and column-swapping. There
is another explicit formula for determinants, in addition to the εijkaibjck formula, it is the Laplace
(or Cofactor) expansion in terms of 2-by-2 determinants, e.g.∣∣∣∣∣∣

a1 b1 c1
a2 b2 c2
a3 b3 c3

∣∣∣∣∣∣ = a1

∣∣∣∣ b2 c2
b3 c3

∣∣∣∣− a2 ∣∣∣∣ b1 c1
b3 c3

∣∣∣∣+ a3

∣∣∣∣ b1 c1
b2 c1

∣∣∣∣ , (60)

where the 2-by-2 determinants are ∣∣∣∣ a1 b1
a2 b2

∣∣∣∣ = a1b2 − a2b1. (61)

This formula is nothing but ~a · (~b × ~c) expressed with respect to a right handed basis. To verify
that, compute the components of (~b × ~c) first, then dot with the components of ~a. This cofactor
expansion formula can be applied to any column or row, however there are ±1 factors that appear.
We won’t go into the straightforward details, but all that follows directly from the column swapping
property (57). That’s essentially the identities ~a · (~b× ~c) = ~b · (~c× ~a) = · · · .

Exercises

1. Show that the 2-by-2 determinant

∣∣∣∣ a1 b1
a2 b2

∣∣∣∣ = a1b2 − a2b1, is the signed area of the par-

allelogram with sides ~a = a1~e1 + a2~e2, ~b = b1~e1 + b2~e2. It is positive if ~a,~b,−~a,−~b is a
counterclockwise cycle, negative if the cycle is clockwise. Sketch (of course).

2. The determinant det(~a,~b,~c) of three oriented line segments ~a, ~b, ~c is a geometric quantity.
Show that det(~a,~b,~c) = |~a| |~b| |~c| sinφ cos θ. Specify φ and θ. Sketch.

3. Show that −|~a| |~b| |~c| ≤ det(~a,~b,~c) ≤ |~a| |~b| |~c|. When do the equalities apply? Sketch.
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4. Use properties (49) and (50) to show that

det(α~a + λ~d, β~b + µ~e,~c) =

αβ det(~a,~b,~c) + αµdet(~a,~e,~c) + βλdet(~d,~b,~c) + λµ det(~d,~e,~c).

5. Use properties (49) and (51) to show that det(~ei,~ej ,~ek) = εijk.

6. Use property (50) and exercise 5 above to show that if ~a = ai~ei,~b = bi~ei, ~c = ci~ei (summation
convention) then det(~a,~b,~c) = εijkaibjck.

7. Prove the identity (~a×~b) · (~c× ~d) = (~a ·~c)(~b · ~d)− (~a · ~d)(~b ·~c) using both vector identities
and indicial notation.

8. Express (~a×~b) · (~a×~b) in terms of dot products of ~a and ~b.

9. Show that (~a ·~a)(~b ·~b)− (~a ·~b)2 is the square of the area of the parallelogram spanned by ~a
and ~b.

10. If A is the area the parallelogram with sides ~a and ~b, show that

A2 =

∣∣∣∣∣ ~a · ~a ~a ·~b
~a ·~b ~b ·~b

∣∣∣∣∣ .
11. If det(~a,~b,~c) 6= 0, then any vector ~v can be expanded as ~v = α~a + β~b + γ~c. Find explicit

expressions for the components α, β, γ in terms of ~v and the basis vectors ~a, ~b, ~c in the
general case when the latter are not orthogonal. [Hint: project on cross products of the basis
vectors, then collect the mixed products into determinants and deduce Cramer’s rule].

12. Given three vectors ~a1, ~a2, ~a3 such that D = ~a1 · (~a2 × ~a3) 6= 0, define

~a′
1 = (~a2 × ~a3)/D, ~a′

2 = (~a3 × ~a1)/D, ~a′
3 = (~a1 × ~a2)/D. (62)

This is the reciprocal basis of the basis ~a1, ~a2, ~a3.

(i) Show that ~ai · ~a′
j = δij , ∀ i, j = 1, 2, 3.

(ii) Show that if ~v =
∑3

i=1 vi~ai and ~v =
∑3

i=1 v
′
i~a

′
i, then vi = ~v · ~a′

i and v′i = ~v · ~ai. So the
components in one basis are obtained by projecting onto the other basis.

13. If ~a and ~b are linearly independent and ~c is any arbitrary vector, find α, β and γ such that
~c = α~a+ β~b+ γ(~a×~b). Express α, β and γ in terms of dot products only. [Hint: find α and
β first, then use ~c‖ = ~c− ~c⊥.]

14. Express (~a×~b) ·~c in terms of dot products of ~a, ~b and ~c only. [Hint: solve problem 13 first.]

15. Provide an algorithm to compute the volume of the parallelepiped (~a, ~b, ~c) by taking only
dot products. [Hint: ‘rectify’ the parallelepiped (~a,~b,~c)→ (~a,~b⊥,~c⊥) → (~a,~b⊥,~c⊥⊥) where
~b⊥ and ~c⊥ are perpendicular to ~a, and ~c⊥⊥ is perpendicular to both ~a and ~b⊥. Explain
geometrically why these transformations do not change the volume. Explain why these trans-
formations do not change the determinant by using the properties of determinants.]
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16. (*) If V is the volume of the parallelepiped with sides ~a, ~b, ~c show that

V 2 =

∣∣∣∣∣∣∣
~a · ~a ~a ·~b ~a · ~c
~b · ~a ~b ·~b ~b · ~c
~c · ~a ~c ·~b ~c · ~c

∣∣∣∣∣∣∣ .
Do this in several ways: (i) from problem 13, (ii) using indicial notation and the formula (45).

1.8 Points, Lines, Planes, etc.

Points and vectors are different. We do not add points, but vector addition is defined. However,
once a reference point has been picked, called the origin O, any point P is uniquely determined by

specifying the vector ~r ≡
−−→
OP . This special vector is called the position vector. It is often denoted ~x

also. Position vectors have a special meaning because they are tied to a specific origin. Representing
points by position vectors is extremely useful as all vector operations are then available to us.
Examples:

• The center of mass ~rc of a system of N particles of mass mi located at position ~ri, i = 1, . . . , N
is defined by M ~rc =

∑N
i=1mi~ri where M =

∑N
i=1mi is the total mass. This is a coordinate-

free expression for the center of mass. In particular, if all the masses are equal then for N = 2,
~rc = (~r1 + ~r2)/2, for N = 3, ~rc = (~r1 + ~r2 + ~r3)/3.

B Show that the center of gravity of three points of equal mass is at the point of intersection of
the medians of the triangle formed by the three points.

• The vector equation of a line parallel to ~a passing through a point ~r0 is

(~r − ~r0)× ~a = 0 ⇔ ~r = ~r0 + α~a, ∀α ∈ R. (63)

• The equation of a plane through ~r0 parallel to ~a and ~b (with ~a ×~b 6= 0), or (equivalently)
perpendicular to ~n ≡ ~a×~b is

(~r − ~r0) · ~n = 0 ⇔ ~r = ~r0 + α~a + β~b, ∀α, β ∈ R. (64)

• The equation of a sphere of center ~rc and radius R is

|~r − ~rc| = R ⇔ ~r = ~rc +R~n, ∀~n s.t. |~n| = 1. (65)

B Find vector equations for the line passing through the two points ~r1, ~r2 and the plane through
the three points ~r1, ~r2, ~r3.

B What is the distance between the point ~r1 and the plane through ~r0 perpendicular to ~a?

B What is the distance between the point ~r1 and the plane through ~r0 parallel to ~a and ~b?

B What is the distance between the line parallel to ~a that passes through point A and the line
parallel to ~b that passes through point B?

B A particle was at point P1 at time t1 and is moving at the constant velocity ~v1. Another
particle was at P2 at t2 and is moving at the constant velocity ~v2. How close did the particles
get to each other and at what time? What conditions are needed for a collision?
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1.9 Vector function of a scalar variable

The position vector of a moving particle is a vector function ~r(t) of the scalar time t. The derivative
of a vector function is defined as usual

d~r

dt
(t) = lim

h→0

~r(t+ h)− ~r(t)

h
. (66)

The derivative of the position vector is of course the instantaneous velocity vector ~v(t) = d~r/dt. The
position vector ~r(t) describes a curve in three-dimensional space, the particle trajectory, and ~v(t) is
tangent to that curve. The derivative of the velocity vector is the acceleration vector ~a(t) = d~v/dt.
We’ll often use Newton’s notation for time derivatives: d~r/dt ≡ ṙ, d2~r/dt2 = r̈, etc.
We need to know how to manipulate derivatives of vector functions. It is easy to show that the
derivative of a sum of vectors is the sum of the derivatives,

d

dt
(~a +~b) =

d~a

dt
+
d~b

dt
.

For the various products, we can show by the ‘standard’ product derivative trick recalled in class
that

d

dt
(α~a) =

dα

dt
~a + α

d~a

dt
,

d

dt
(~a ·~b) =

d~a

dt
·~b + ~a · d

~b

dt
,

d

dt
(~a×~b) =

d~a

dt
×~b + ~a× d~b

dt
,

then
d

dt
[(~a×~b) · ~c] = (

d~a

dt
×~b) · ~c + (~a× d~b

dt
) · ~c + (~a×~b) · d~c

dt
,

therefore
d

dt
det(~a,~b,~c) = det(

d~a

dt
,~b,~c) + det(~a,

d~b

dt
,~c) + det(~a,~b,

d~c

dt
).

All of these are as expected but the formula for the derivative of a determinant is worth noting
because it generalizes to any dimension. 5

B Show that if ~e(t) is any vector with constant norm, i.e. ~e(t) · ~e(t) = Constant ∀ t, then

~e(t) · d~e
dt

(t) = 0, ∀t. (67)

The derivative of a constant norm vector is orthogonal to the vector.

B If r = ‖~r‖, where ~r = ~r(t), show that dr/dt = r̂ · ṙ ≡ r̂ · ~v.

B If ~v(t) = d~r/dt, show that d(~r × ~v)/dt = ~r × d~v/dt. In mechanics, ~r ×m~v is the angular
momentum of the particle of mass m and velocity ~v with respect to the origin.

We now illustrate all these concepts and results by considering the basic problems of classical
mechanics: motion of a particle and motion of a rigid body.

5For determinants in R3 it reads

d

dt

∣∣∣∣∣∣
a1 b1 c1
a2 b2 c2
a3 b3 c3

∣∣∣∣∣∣ =
∣∣∣∣∣∣
ȧ1 b1 c1
ȧ2 b2 c2
ȧ3 b3 c3

∣∣∣∣∣∣+
∣∣∣∣∣∣
a1 ḃ1 c1
a2 ḃ2 c2
a3 ḃ3 c3

∣∣∣∣∣∣+
∣∣∣∣∣∣
a1 b1 ċ1
a2 b2 ċ2
a3 b3 ċ3

∣∣∣∣∣∣
and of course we could also take the derivatives along rows instead of columns.
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1.10 Motion of a particle

In classical mechanics, the motion of a particle of mass m is governed by Newton’s law

~F = m~a, (68)

where ~F is the resultant of the forces acting on the particle and ~a(t) = d~v/dt = d2~r/dt2 is its
acceleration, with ~r(t) its position vector. Newton’s law is a vector equation.

Free motion

If ~F = 0 then d~v/dt = 0 so the velocity of the particle is constant, ~v(t) = ~v0 say, and its position
is given by the vector differential equation d~r/dt = ~v0 whose solution is ~r(t) = ~r0 + t~v0 where ~r0
is a constant of integration which corresponds to the position of the particle at time t = 0. The
particle moves in a straight line through ~r0 parallel to ~v0.

Constant acceleration

d2~r

dt2
=
d~v

dt
= ~a(t) = ~a0 (69)

where ~a0 is a time-independent vector. Integrating we find

~v(t) = ~a0t+ ~v0, ~r(t) = ~a0
t2

2
+ ~v0t+ ~r0 (70)

where ~v0 and ~r0 are vector constants of integration. They are easily interpreted as the velocity and
position at t = 0.

Uniform rotation

If a particle rotates with angular velocity ω about an axis parallel to ~n that passes through the point
~ra (we take ‖~n‖ = 1 and define ω > 0 for right-handed rotation about ~n, ω < 0 for left-handed
rotation) then its velocity is

~v(t) = ~ω × (~r(t)− ~ra)

where ~ω ≡ ω~n is the rotation vector.
B Show that ‖~r(t) − ~ra‖ remains constant. Calculate the particle acceleration if ~ω and ~ra are
constants and interpret geometrically. Find the force required to sustain such a motion.

Motion due to a central force

A force ~F = −F (r) r̂ where r = ‖~r‖ that always points toward the origin (if F (r) > 0, away if
F (r) < 0 ) and depends only on the distance to the origin is called a central force. The gravitational
force for planetary motion and the Coulomb force in electromagnetism are of that kind. Newton’s
law for a particle submitted to such a force is

m
d~v

dt
= −F (r) r̂

where ~r(t) = rr̂ is the position vector of the particle, hence both r and r̂ are functions of time,
and ~v = d~r/dt. Motion due to such a force has two conserved quantities.

• Conservation of angular momentum ∀ F (r)
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~r × d~v

dt
= 0⇔ d

dt
(~r × ~v) = 0⇔ ~r × ~v ≡ L0ẑ (71)

where L0 > 0 and ẑ are constants. So the motion remains in the plane orthogonal to ẑ. Now
L0ẑdt = ~r × ~vdt = ~r × d~r = 2daẑ where da is the triangular area swept by ~r in time dt. This
yields

Kepler’s law: The radius vector sweeps equal areas in equal times.

• Conservation of energy: kinetic + potential

m
d~v

dt
· ~v + F (r) r̂ · ~v = 0⇔ d

dt

(
m
~v · ~v

2
+ V (r)

)
= 0,

where dV (r)/dr ≡ F (r) as by the chain rule dV (r)/dt = (dV/dr)(dr/dt) = (dV/dr) r̂ · ~v. This
implies that (

m
‖~v‖2

2
+ V (r)

)
= E0 (72)

where E0 is a constant. The first term m‖~v‖2/2 is the kinetic energy and the second V (r) is
the potential energy which is defined up to an arbitrary constant. The constant E0 is the total
conserved energy. Note that V (r) and E0 can be negative but m‖~v‖2/2 ≥ 0, so the physically
admissible r domain is that were V (r) is less than E0.

1.11 Motion of a system of particles

Consider N particles of mass mi at positions ~ri, i = 1, . . . , N . The net force acting on particle
number i is ~F i and Newton’s law for each particle reads miṙi = ~F i. Summing over all i’s yields

N∑
i=1

miṙi =
N∑
i=1

~F i.

Great cancellations occur on both sides. On the left side, let ~ri = ~rc +~si, where ~rc is the center of
mass and ~si is the position vector of particle i with respect to the center of mass, then∑

i

mi~ri =
∑
i

mi (~rc + ~si) = M~rc +
∑
i

mi~si ⇒
∑
i

mi~si = 0,

as, by definition of the center of mass
∑

imi~ri = M~rc, where M =
∑

imi is the total mass. If the
masses mi are constants then

∑
imi~si = 0 ⇒

∑
imiṡi = 0 ⇒

∑
imiṡi = 0. In that case,

∑
imiṙi

=
∑

imi (ṙc + ṡi) =
∑

imiṙc = M ṙc. On the right-hand side, by action-reaction, all internal forces

cancel out and the resultant is therefore the sum of all external forces only
∑

i
~F i =

∑
i
~F
(e)

i = ~F
(e)

.
Therefore,

M ṙc = ~F
(e)

(73)

where M is the total mass and ~F
(e)

is the resultant of all external forces acting on all the particles.
The motion of the center of mass of a system of particles is that of a single particle of mass M
with position vector ~rc under the action of the sum of all external forces. This is a fundamental
theorem of mechanics.
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There are also nice cancellations occurring for the motion about the center of mass. This involves
considering angular momentum and torques about the center of mass. Taking the cross-product of
Newton’s law, miṙi = ~F i, with ~si for each particle and summing over all particles gives∑

i

~si ×miṙi =
∑
i

~si × ~F i.

On the left hand side, ~ri ≡ ~rc + ~si and the definition of center of mass implies
∑

imi~si = 0.
Therefore

∑
i

~si ×miṙi =
∑
i

~si ×mi(ṙc + ṡi) =
∑
i

~si ×miṡi =
d

dt

(∑
i

~si ×miṡi

)
.

This last expression is the rate of change of the total angular momentum about the center of mass

~Lc ≡
N∑
i=1

(~si ×miṡi) .

On the right hand side, one can argue that the (internal) force exerted by particle j on particle i is
in the direction of the relative position of j with respect to i, ~f ij ≡ αij(~ri−~rj). By action-reaction

the force from i onto j is ~f ji = −~f ij = −αij(~ri − ~rj), and the net contribution to the torque from

the internal forces will cancel out: ~ri × ~f ij + ~rj × ~f ji = 0. This is true with respect to any point

and in particular, with respect to the center of mass ~si× ~f ij +~sj × ~f ji = 0. Hence, for the motion
about the center of mass we have

d~Lc
dt

= ~T
(e)

c (74)

where ~T
(e)

=
∑

i ~si× ~F i is the net torque about the center of mass due to external forces only. This
is another fundamental theorem, that the rate of change of the total angular momentum about the
center of mass is equal to the total torque due to the external forces only.

B If ~f ij = α (~ri − ~rj) and ~f ji = α (~rj − ~ri), show algebraically and geometrically that ~si × ~f ij +

~sj × ~f ji = 0, where ~s is the position vector from the center of mass.

1.12 Motion of a rigid body

The two vector differential equations for motion of the center of mass and evolution of the angular
momentum about the center of mass are sufficient to fully determine the motion of a rigid body.
A rigid body is such that all lengths and angles are preserved within the rigid body. If A, B and

C are any three points of the rigid body, then
−−→
AB ·

−→
AC = constant.

Kinematics of a rigid body

Consider a right-handed orthonormal basis, ~e1(t), ~e2(t), ~e3(t) tied to the body. These vectors are
functions of time t because they are frozen into the body so they rotate with it. However the basis
remains orthonormal as all lengths and angles are preserved. Hence ~ei(t) ·~ej(t) = δij ∀ i, j = 1, 2, 3,
and ∀t and differentiating with respect to time

d~ei
dt
· ~ej + ~ei ·

d~ej
dt

= 0. (75)
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In particular, as seen in an earlier exercise, the derivative of a unit vector is orthogonal to the
vector: ~el · ėl = 0, ∀l = 1, 2, 3. So we can write

d~el
dt
≡ ~ωl × ~el, ∀ l = 1, 2, 3 (76)

as this guarantees that ~el · ėl = 0 for any ~ωl. Substituting this expression into (75) yields

(~ωi × ~ei) · ~ej + ~ei · (~ωj × ~ej) = 0,

and rewriting the mixed products

(~ei × ~ej) · ~ωi = (~ei × ~ej) · ~ωj . (77)

Now let
~ωl ≡

∑
k

ωkl~ek = ω1l~e1 + ω2l~e2 + ω3l~e3,

so ωkl is the k component of vector ~ωl. Substituting in (77) gives∑
k

εijkωki =
∑
k

εijkωkj (78)

where as before εijk ≡ (~ei ×~ej) ·~ek. The sums over k have at most one non-zero term. This yields
the three equations

(i, j, k) = (1, 2, 3) −→ ω31 = ω32

(i, j, k) = (2, 3, 1) −→ ω12 = ω13

(i, j, k) = (3, 1, 2) −→ ω23 = ω21.
(79)

The second equation, for instance, says that the first component of ~ω2 is equal to the first component
of ~ω3. Now ωll is arbitrary according to (76) (why?), so we can choose to define ω11, the first
component of ~ω1, for instance, equal to the first components of the other two vectors that are equal
to each other, i.e. ω11 = ω12 = ω13. Likewise, pick ω22 = ω23 = ω21 and ω33 = ω31 = ω32. This
choice implies that

~ω1 = ~ω2 = ~ω3 ≡ ~ω (80)

The vector ~ω(t) is the Poisson vector of the rigid body.
The Poisson vector ~ω(t) gives the rate of change of any vector tied to the body. Indeed, if A and

B are any two points of the body then the vector ~c ≡
−−→
AB can be expanded with respect to the

body basis ~e1(t), ~e2(t), ~e3(t)

~c(t) = c1~e1(t) + c2~e2(t) + c3~e3(t),

but the components ci ≡ ~c(t) · ~ei(t) are constants because all lengths and angles, and therefore all
dot products, are time-invariant. Thus

d~c

dt
=

3∑
i=1

ci
d~ei
dt

=
3∑
i=1

ci (~ω × ~ei) = ~ω × ~c.

This is true for any vector tied to the body (material vectors), implying that the Poisson vector is
unique for the body.
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Dynamics of rigid body

The center of mass of a rigid body moves according to the sum of the external forces as for a
system of particles. A continuous rigid body can be considered as a continuous distribution of
‘infinitesimal’ masses dm

N∑
i=1

mi~si −→
∫
V
~s dm

where the three-dimensional integral is over all points ~s in the domain V of the body (dm is the
‘measure’ of the infinitesimal volume element dV , or in other words dm = ρdV , where ρ(~s) is the
mass density at point ~s).
For the motion about the center of mass, the position vectors ~si are frozen into the body hence
ṡi = ~ω×~si for any point of the body. The total angular momentum for a rigid system of particles
then reads

~L =
∑
i

mi~si × ṡi =
∑
i

mi~si × (~ω × ~si) =
∑
i

mi

(
‖~si‖2~ω − ~si (~si · ~ω)

)
. (81)

and for a continuous rigid body

~L =

∫
V

(
‖~s‖2~ω − ~s (~s · ~ω)

)
dm. (82)

The Poisson vector is unique for the body, so it does not depend on ~s and we should be able to
take it out of the sum, or integral. That’s easy for the ‖~s‖2~ω term, but how can we get ~ω out of
the

∫
~s (~s · ~ω) dm term?! We need to introduce the concepts of tensor product and tensors to do

this. But we better talk about matrices first.

1.13 Cartesian Coordinates

So far, we have avoided using coordinates in order to emphasize the geometric, i.e. coordinate
independent, aspects of vectors and vector operations, but coordinates are crucial for calculations. A
cartesian system of coordinates consist of three oriented orthogonal lines, the x, y and z coordinate
axes, passing through a point O, the origin. The orientation of the axes is usually chosen to
correspond to the right-hand rule. A point P is then specified by its coordinates x, y, z with respect
to the origin along each axis. To describe displacements, i.e. vectors, we need a set of basis vectors.
It makes sense to take a basis that is aligned with the coordinate axes. Therefore we pick unit
vectors x̂, ŷ, ẑ aligned with each of the axes, respectively, and pointing in the positive direction.6 A
point with coordinates (x, y, z) then has position vector ~r = xx̂+ yŷ + zẑ or ~r = x~ex + y~ey + z~ez.
Note that points have coordinates and vectors have components. It is often more convenient to
use subscripts writing (x1, x2, x3) in lieu of (x, y, z). In that notation, the position vectors reads
~r = x1x̂1 + x2x̂2 + x3x̂3 or ~r = x1~e1 + x2~e2 + x3~e3

Exercises

Express the lines, planes and spheres of section 1.8 in terms of Cartesian coordinates.

6Although we call x̂, for instance, a unit vector, in the sense that ‖x̂‖ = 1, unit vectors have no physical units.
The position vector ~r and its components x, y, z have units of length. The unit vectors in physics are pure numbers
indicating directions. “Direction vector” is a better term.
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2 Matrices

2.1 Orthogonal transformations

Consider two orthonormal bases ~ei and ~ei
′ in 3D euclidean space so i = 1, 2, 3. A vector ~v can be

expanded in terms of each bases as ~v = v1~e1 + v2~e2 + v3~e3 and ~v = v′1~e1
′ + v′2~e2

′ + v′3~e3
′. What

are the connections between the two sets of components (v1, v2, v3) and (v′1, v
′
2, v

′
3)?

We can find the relations between these coordinates using geometry but it is much easier and sys-
tematic to use vectors and vector operations. Although the components are different (v1, v2, v3) 6=
(v′1, v

′
2, v

′
3), the geometric vector ~v is independent of the choice of basis, thus

~v =

3∑
i=1

v′i~ei
′ =

3∑
i=1

vi~ei,

and the relationship between the two sets of coordinates are then

v′i = ~ei
′ · ~v =

3∑
j=1

(~ei
′ · ~ej) vj ≡

3∑
j=1

Qij vj , (83)

and, likewise,

vi = ~ei · ~v =
3∑
j=1

(~ei · ~ej ′) v′j ≡
3∑
j=1

Qji v
′
j , (84)

where we defined
Qij ≡ ~ei

′ · ~ej (85)

These Qij coefficients are the direction cosines, they equal the cosine of the angle between the
direction vectors ~e′i and ~ej . A priori, there are 9 such coefficients. However, orthonormality of
both bases imply many constraints. These constraints follow from eqns. (83), (84) which must hold
for any (v1, v2, v3) and (v′1, v

′
2, v

′
3). Substituting (84) into (83) (watching out for dummy indices!)

yields

v′i =
3∑

k=1

3∑
j=1

QikQjk v
′
j , ∀v′ ⇒

3∑
k=1

QikQjk = δij . (86)

Likewise, substituting (83) into (84) gives

vi =

3∑
k=1

3∑
j=1

QkiQkj vj , ∀v ⇒
3∑

k=1

QkiQkj = δij . (87)

These two relationships have simple geometric interpretations. Indeed Qij = ~ei
′ · ~ej can be inter-

preted as the j component of ~ei
′ in the {~e1,~e2,~e3} basis, as well as the i component of ~ej in the

{~e1′,~e2′,~e3′} basis. Therefore we can write

~ei
′ =

3∑
k=1

(~ei
′ · ~ek)~ek =

3∑
k=1

Qik ~ek = Qi1~e1 +Qi2~e2 +Qi3~e3,

and

~ej =
3∑

k=1

(~ej · ~ek ′)~ek ′ =
3∑

k=1

Qkj ~ek
′ = Q1j~e1

′ +Q2j~e2
′ +Q3j~e3

′.
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Then

~ei
′ · ~ej ′ ≡

3∑
k=1

QikQjk = δij , (88)

and

~ei · ~ej ≡
3∑

k=1

QkiQkj = δij . (89)

These are the orthogonality conditions (orthonormality, really) satisfied by the Qij .

2.2 Definitions and basic matrix operations

The 9 coefficients Qij in (83) are the elements of a 3-by-3 matrix Q, i.e. a 3-by-3 table with the
first index i corresponding to the row index and the second index j to the column index. That Q
was a very special i.e. orthogonal matrix. More generally a 3-by-3 real matrix A is a table of 9 real
numbers

A ≡ [Aij ] ≡

 A11 A12 A13

A21 A22 A23

A31 A32 A33

 . (90)

Matrices are denoted by a capital letter, e.g. A and Q and by square brackets [ ]. By convention,
vectors in R3 are defined as 3-by-1 matrices e.g.

x =

 x1
x1
x3

 ,
although for typographical reasons we’ll often write x = (x1, x2, x3) but not [x1, x2, x3] which would
denote a 1-by-3 matrix, or row vector. The term matrix is similar to vectors in that it implies precise
rules for manipulations of these objects (for vectors these are the two fundamental addition and
scalar multiplication operations with specific properties, see Sect. 1.1).

Matrix-vector multiply

Equation (83) shows how matrix-vector multiplication should be defined. The matrix vector product
Ax (A 3-by-3, x ∈ R3) is a vector b in R3 whose i-th component is the dot-product of row i of
matrix A with the column x,

Ax = b ⇔ bi =
∑
j

Aijxj .

The product is performed row-by-column. This product is defined only if the number of columns
of A is equal to the number of rows of x. A 2-by-1 vector cannot be multiplied by a 3-by-3 matrix.

Identity Matrix

There is a unique matrix such that Ix = x, ∀x. For x ∈ R3, show that

I =

 1 0 0
0 1 0
0 0 1

 . (91)



c©F. Waleffe, Math 321, 2008/09/01 31

Matrix-Matrix multiply

Two successive transformation of orthogonal coordinates, i.e.

x′i =
3∑
j=1

Aij xj , then x′′i =
3∑
j=1

Bij x
′
j

can be combined into one transformation from xj to x′′i

x′′i =

3∑
j=1

3∑
k=1

BikAkj xj ≡
3∑
j=1

Cij xj

where

(BA)ij ≡ Cij =
3∑

k=1

BikAkj . (92)

This defines matrix multiplication. The product of two matrices BA is a matrix, C say, whose (i, j)
element is the dot product of row i of B with column j of A. As for matrix-vector multiplication,
the product of two matrices is done row-by-column. This requires that the length of the rows of
the first matrix equals the length of the columns of the second, i.e. the number of columns of the
first must match the number of rows of the second. The product of a 3-by-3 matrix and a 2-by-2
matrix is not defined. In general, BA 6= AB, matrix multiplication does not commute. You can
visualize this by considering two successive rotation of axes, one by angle α about ~e3, followed by
one by β about ~e′2. This is not the same as rotating by β about ~e2, then by α about ~e′3. You can
also see it algebraically

(BA)ij =
∑
k

BikAkj 6=
∑
k

AikBkj ≡ (AB)ij .

Matrix transpose

The transformation (84) involves the sum
∑

j Ajix
′
j that is similar to the matrix vector multiply

except that the multiplication is column-by-column! To write this as a matrix-vector multiply, we
define the transpose matrix AT whose row i correspond to column i of A. If the (i, j) element of A
is Aij then the (i, j) element of AT is Aji

(AT )ij = (A)ji.

Then

xi =

3∑
j=1

Ajix
′
j ⇔ x = ATx′. (93)

A symmetric matrix A is such that A = AT , but an anti-symmetric matrix A is such that A = −AT .
Verify (as done in class) that the transpose of a product is equal to the product of the transposes in
reverse order (AB)T = BTAT .
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Orthogonal Matrices

Arbitrary matrices are typically denoted A, while orthogonal matrices are typically denoted Q in
the literature. In matrix notation, the orthogonality conditions (88), (89) read

QTQ = QQT = I. (94)

A matrix that satisfy these relationships is called an orthogonal matrix (it should have been called
orthonormal). A proper orthogonal matrix has determinant equal to 1 and corresponds to a pure
rotation. An improper orthogonal matrix has determinant -1. It corresponds to a combination of
rotations and an odd number of reflections. The product of orthogonal matrices is an orthogonal
matrix.
This is useful as any 3-by-3 proper orthogonal matrix can be decomposed into the product of three
elementary rotations. There are several ways to define these elementary rotations but a common
one that corresponds to spherical coordinates is to (1) rotate by α about ~e3, (2) rotate by β about
~e2

′, (3) rotate by γ about ~e3
′′. The 3 angles α, β, γ are called Euler angles. Hence a general

3-by-3 orthogonal matrix A can always be written as

Q =

 cos γ sin γ 0
− sin γ cos γ 0

0 0 1

 cosβ 0 − sinβ
0 1 0

sinβ 0 cosβ

 cosα sinα 0
− sinα cosα 0

0 0 1

 . (95)

To define an arbitrary orthogonal matrix, we can then simply pick any three arbitrary (Euler)
angles α, β, γ and construct an orthonormal matrix using (95). Another important procedure to
do this is the Gram-Schmidt procedure: pick any three a1, a2, a3 and orthonormalize them, i.e.

(1) First, define q1 = a1/‖a1‖ and a′
2 = a2 − (a2 · q1)q1, a′

3 = a3 − (a3 · q1)q1,

(2) next, define q2 = a′
2/‖a′

2‖ and a′′
3 = a′

3 − (a′
3 · q2)q2,

(3) finally, define q3 = a′′
3/‖a′′

3‖.

The vectors q1, q2, q3 form an orthonormal basis. This procedure generalizes not only to any
dimension but also to other vector spaces, e.g. to construct orthogonal polynomials.

Exercises

1. Give explicit examples of 2-by-2 and 3-by-3 symmetric and antisymmetric matrices.

2. If xT = [x1, x2, x3], calculate xTx and xxT .

3. Show that xTx and xxT are symmetric (explicitly and by matrix manipulations).

4. If A is a square matrix of appropriate size, what is xTAx?

5. Show that the product of two orthogonal matrices is an orthogonal matrix. Interpret geo-
metrically.

6. What is the general form of a 3-by-3 orthogonal and symmetric matrix?

7. What is the orthogonal matrix corresponding to a reflection about the x− z plane? What is
its determinant?

8. What is the most general form of a 2-by-2 orthogonal matrix?
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9. Suppose that you would like to rotate an object (i.e. a set of points) about a given axis by an
angle γ. Can you explain how to do this? [Hint: (1) Translation: express coordinates of any
point ~r with respect to any point ~r0 on the rotation axis: ~r−~r0. (2) Perform two elementary
rotations to align the vertical axis with the rotation axis, i.e. find the Euler angles α and β.
Express the coordinates of ~r − ~r0 in that new set of coordinates. (3) Rotate the vector by γ,
this is equivalent to multiplying by the transpose of the matrix corresponding to rotation of
axes by γ. Then you need to re-express the coordinates in terms of the original axes! that’s
a few multiplication by transpose of matrices you already have].

10. What is the rotation matrix corresponding to rotation by π about ~e2?

11. What is the matrix corresponding to (right-handed) rotation by angle α about the direction
~e1 + ~e2 + ~e3?

12. Find the components of a vector ~a rotated by angle γ about the direction ~e1 + 2~e2 + 2~e3.

13. Pick three non-trivial but arbitrary vectors in R3 (e.g. using Matlab’s randn(3,3)), then
construct an orthonormal basis q1, q2, q3 using the Gram-Schmidt procedure. Verify that
the matrix Q = [q1, q2, q3] is orthogonal. Note in particular that the rows are orthogonal
eventhough you orthogonalized the columns only.

14. Pick two arbitrary vectors a1, a2 in R3 and orthogonalize them to construct q1, q2. Consider
the 3-by-2 matrix Q = [q1, q2] and compute QQT and QTQ. Can you explain the results?

2.3 Determinant of a matrix

See earlier discussion of determinants (section on mixed product). The determinant of a matrix
has the explicit formula det(A) = εijkAi1Aj2Ak3, the only non-zero terms are for (i, j, k) equal to
a permutation of (1, 2, 3). We can deduce several fundamental properties of determinants from
that formula. We can reorder Ai1Aj2Ak3 into A1lA2mA3n using an even number of permutations if
(i, j, k) is an even perm of (1,2,3) and an odd number for odd permutations. So

det(A) = εijkAi1Aj2Ak3 = εlmnA1lA2mA3n = det(AT ). (96)

Another useful result is that

εijkAilAjmAkn = εijkεlmnAi1Aj2Ak3 (97)

Then it is easy to prove that det(AB) = det(A) det(B):

det(AB) = εijkAilBl1AjmBm2AknBn3 = εijkεlmnAi1Aj2Ak3Bl1Bm2Bn3 = det(A) det(B) (98)

One nice thing is that these results and manipulations generalize straightforwardly to any dimen-
sion.

2.4 Three views of Ax = b

2.4.1 Column View

I View b as a linear combination of the columns of A.

Write A as a row of columns, A = [a1,a2,a3], where aT1 = [a11, a21, a31] etc., then

b = Ax = x1a1 + x2a2 + x3a3
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and b is a linear combination of the columns a1, a2, a3. If x is unknown, the linear system of
equations Ax = b will have a solution for any b if and only if the columns form a basis, i.e. iff
det(a1,a2,a3) ≡ det(A) 6= 0. If the determinant is zero, then the 3 columns are in the same plane
and the system will have a solution only if b is also in that plane.
As seen in earlier exercises, we can find the components (x1, x2, x3) by thinking geometrically and
projecting on the reciprocal basis e.g.

x1 =
b · (a2 × a3)

a1 · (a2 × a3)
≡ det(b,a2,a3)

det(a1,a2,a3)
. (99)

Likewise

x2 =
det(a1, b,a3)

det(a1,a2,a3)
, x3 =

det(a1,a2, b)

det(a1,a2,a3)
.

This is a nifty formula. Component xi equals the determinant where vector i is replaced by b
divided by the determinant of the basis vectors. You can deduce this directly from the algebraic
properties of determinants, for example,

det(b,a2,a3) = det(x1a1 + x2a2 + x3a3,a2,a3) = x1 det(a1,a2,a3).

This is Cramer’s rule and it generalizes to any dimension, however computing determinants in
higher dimensions can be very costly and the next approach is computationally much more efficient.

2.4.2 Row View:

I View x as the intersection of planes perpendicular to the rows of A.

View A as a column of rows, A = [~n1,~n2,~n3]
T , where ~nT1 = [a11, a12, a13] is the first row of A, etc.,

then

b = Ax =

 ~nT1
~nT2
~nT3

x ⇔


~n1 · x = b1
~n2 · x = b2
~n3 · x = b3

and x is seen as the position vector of the intersection of three planes. Recall that ~n ·x = C is the
equation of a plane perpendicular to ~n and passing through a point x0 such that ~n · x0 = C, for
instance the point x0 = C~n/‖~n‖.
To find x such that Ax = b, for given b and A, we can combine the equations in order to eliminate
unknowns, i.e. 

~n1 · x = b1
~n2 · x = b2
~n3 · x = b3

⇔


~n1 · x = b1

(~n2 − α2~n1) · x = b2 − α2b1
(~n3 − α3~n1) · x = b3 − α3b1

where we pick α2 and α3 such that the new normal vectors ~n′
2 = ~n2 − α2~n1 and ~n′

3 = ~n3 − α3~n1

have a zero 1st component i.e. ~n′
2 = (0, a′22, a

′
23), ~n

′
3 = (0, a′32, a

′
33). At the next step, one defines a

~n′′
3 = ~n′

3−β3~n′
2 picking β3 so that the 1st and 2nd components of ~n′′

3 are zero, i.e. ~n′′
3 = (0, 0, a′′33).

And the resulting system of equations is then easy to solve by backward substitution. This is
Gaussian Elimination which in general requires swapping of equations to avoid dividing by small
numbers. We could also pick the α’s and β’s to orthogonalize the ~n’s, just as in the Gram-Schmidt
procedure. That is better in terms of roundoff error and does not require equation swapping but
is computationally twice as expensive as Gaussian elimination.
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2.4.3 Linear Transformation of vectors into vectors

I View b as a linear transformation of x.

Here A is a ‘black box’ that transforms the vector input x into the vector output b. This is the
most general view of Ax = b. The transformation is linear, this means that

A(αx + βy) = α(Ax) + β(Ay), ∀ α, β ∈ R,x,y ∈ Rn (100)

This can be checked directly from the explicit definition of matrix-vector multiply:∑
k

Aik(αxk + βyk) =
∑
k

αAikxk +
∑
k

βAikyk.

This linearity property is a key property because if A is really a black box (e.g. the “matrix” is not
actually known, it’s just a machine that takes a vector and spits out another vector) we can figure
out the effect of A onto any vector x once we know A~e1, A~e2, . . . , A~en.
This transformation view of matrices leads to the following extra rules of matrix manipulations.
Matrix-Matrix addition

Ax +Bx = (A+B)x ⇔
∑
k

Aikxk +
∑
k

Bikxk =
∑
k

(Aik +Bik)xk, ∀xk (101)

so matrices are added components by components and A+B = B+A, (A+B) +C = A+ (B+C).
The zero matrix is the matrix whose entries are all zero.
Matrix-scalar multiply

A(αx) = (αA)x⇔
∑
k

Aik(αxk) =
∑
k

(αAik)xk, ∀α, xk (102)

so multiplication by a scalar is also done component by component and α(βA) = (αβ)A = β(αA).
In other words, matrices can be seen as elements of a vector space! This point of view is also useful
in some instances (in fact, computer languages like C and Fortran typically store matrices as long
vectors. Fortran stores it column by column, and C row by row). The set of orthogonal matrices
does NOT form a vector space because the sum of two orthogonal matrices is not, in general, an
orthogonal matrix. The set of orthogonal matrices is a group, the orthogonal group O(3) (for 3-by-3
matrices). The special orthogonal group SO(3) is the set of all 3-by-3 proper orthogonal matrices,
i.e. orthogonal matrices with determinant =+1 that correspond to pure rotation, not reflections.
The motion of a rigid body about its center of inertia is a motion in SO(3), not R3. SO(3) is the
configuration space of a rigid body.

Exercises

B Pick a random 3-by-3 matrix A and a vector b, ideally in matlab using its A=randn(3,3),

b=randn(3,1). Solve Ax = b using Cramer’s rule and Gaussian Elimination. Ideally again in
matlab, unless punching numbers into your calculator really turns you on. Matlab knows all about
matrices and vectors. To compute det(a1,a2,a3) = det(A) and det(b,a2,a3) in matlab, simply use
det(A), det(b,A(:,2),A(:,3)). Type help matfun, or help elmat, and or demos for a peek at
all the goodies in matlab.
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2.5 Eigenvalues and Eigenvectors

Problem: Given a matrix A, find x 6= 0 and λ such that

Ax = λx. (103)

These special vectors are eigenvectors for A. They are simply shrunk or elongated by the transfor-
mation A. The scalar λ is the eigenvalue. The eigenvalue problem can be rewritten

(A− λI)x = 0

where I is the identity matrix of the same size as A. This will have a non-zero solution iff

det(A− λI) = 0. (104)

This is the characteristic equation for λ. If A is n-by-n, it is a polynomial of degree n in λ called
the characteristic polynomial.

3 Vectors and Matrices in n dimensions

3.1 The vector space Rn

3.2 Matrices in Rm × Rn

3.3 Determinants


