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Our purpose in this chapter is to propose that the concept of reflective abstraction can be a
powerful tool in the study of advanced mathematical thinking, that it can provide a theoretical
basis that supports and contributes to our understanding of what this thinking is and how we can
help students develop the ability to engage in it. To make such a case completely, it would be
necessary to do at least several things:

• explain exactly what we mean by reflective abstraction;

• show how it can be used to describe the epistemology of various mathematics concepts;

• indicate how it can suggest explanations of some of the difficulties that students have with
many of these concepts;

and

• establish that it can influence the design of instruction in ways that result in a significant
improvement in the extent to which students appear to acquire these concepts.

We are certainly not ready to do an exhaustive job on all four of these tasks. Indeed, our main
concern here is to make some progress with the first two. There will be a few examples of the third,
and we will make reference to other papers in which we have made a start on the fourth especially
involving the use of computer activities to help students make mental constructions, with results
that are encouraging.

Reflective abstraction is a concept introduced by Piaget to describe the construction of logico–
mathematical structures by an individual during the course of cognitive development. Two impor-
tant observations that Piaget made are first that reflective abstraction has no absolute beginning
but is present at the very earliest ages in the coordination of sensori–motor structures (Beth &
Piaget, 1966, pp. 203–208) 1 and second, that it continues on up through higher mathematics to
the extent that the entire history of the development of mathematics from antiquity to the present
day may be considered as an example of the process of reflective abstraction (Piaget, 1985, pp.
149–150).

In the majority of his own work, however, Piaget concentrated on the development of mathemat-
ical knowledge at the early ages, rarely going beyond adolescence. What we feel is exciting is that,
as he suggested, this same approach can be extended to more advanced topics going into under-
graduate mathematics and beyond. It seems that it is possible not only to discuss and conjecture,
but to provide evidence suggesting, that concepts such as mathematical induction, propositional
and predicate calculus, functions as processes and objects, linear independence, topological spaces,
duality of vector spaces, duality of topological vector spaces, and even category theory can be ana-
lyzed in terms of extensions of the same notions that Piaget used to describe children’s construction
of concepts such as arithmetic, proportion, and simple measurement.

1Piaget repeated many of his comments on reflective abstraction in several places, but was quite consistent on

this topic. Hence, the references we give should be taken as representative.
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This is a strong claim embodied in the phrase “can be analyzed” and, before going further, it is
necessary to explain what sort of analysis we mean. The goal of our study of reflective abstraction
is a general framework which can be used, in principle, to describe any mathematical concept
together with its acquisition. We refer to this as a general theory of mathematical knowledge and
its acquisition. This is the first ingredient of the analysis, but it does not, by itself, lead to any
particular description. In addition, the investigator needs to make use of her or his understanding

of the mathematics. Together these two are enough to obtain a description of any concept but the
result would be far too ex post facto to expect it to have any relation to how students actually might
go about constructing the concept. A third and essential ingredient in the study of any concept
is a long drawn–out, time consuming effort of observation of students as they try to construct
mathematical concepts in order to make sense out of situations in which they find themselves
(presumably, but not necessarily, as the result of activities of a teacher). The analysis then consists
of a synthesis of these three ingredients brought to bear on the question of how a particular topic
in mathematics may be learned. The starting point of our general theory is Piaget’s notion of
reflective abstraction. Unfortunately, this is not a simple idea clearly explained in one place, but
rather something that Piaget appeared to work with over a long period of time after he completed
his empirical studies of children in development. It is important, however, that we begin with a solid
understanding of what he meant by it before trying to extend it to a wider class of mathematical
topics. Therefore we begin this chapter with a section that gives a brief summary of this concept
as Piaget elaborated it in a number of books and papers, mostly written in the last 15 years of his
life. We will emphasize the construction aspects of reflective abstraction because these are the most
important for the development of mathematical thought during adolescence and beyond.

In the second section we will show how Piaget’s ideas can be extended and reorganized to
form a general theory of mathematical knowledge and its acquisition which is applicable to those
mathematical ideas that begin to appear at the post–secondary level and continue to be constructed
in the course of mathematical and other scientific research. It is here, in §2 that we relate various
aspects of the general theory to specific topics in advanced mathematical thinking and give several
examples of how reflective abstraction can suggest explanations of student difficulties.

Our analysis of a particular mathematical concept leads to what we call a genetic decomposition

of the concept which is a description, in terms of our theory, and based on empirical data, of
the mathematics involved and how a subject might make the constructions that would lead to
an understanding of it (which, in our theory, are not very different). It is important to note
that we do not suggest that a concept has a unique genetic decomposition or that this is the
way every subject will learn it. We only claim that observations of learning in progress form an
important source for our genetic decompositions and we offer them as a guide for one possible way
of designing instruction. In §3 we present genetic decompositions for three concepts: mathematical
induction, predicate calculus, and function, insofar as we have constructed them. The references
given in §3 contain more information about examples of instructional treatments based on these
genetic decompositions, using computer experiences, and about the generally encouraging results
of implementing these treatments.

Finally, in §4 we discuss some of the educational implications of our theory of knowledge and
learning and give an overview of how we go about designing an instructional treatment based on it.
We feel that the material in this section is very much akin to the ideas in Thompson (1985a).
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1. PIAGET’S NOTION OF REFLECTIVE ABSTRACTION

1.1 THE IMPORTANCE OF REFLECTIVE ABSTRACTION

Piaget distinguished three major kinds of abstraction. Empirical abstraction derives knowledge
from the properties of objects (Beth & Piaget, 1966, pp.188–189). We interpret this to mean that
it has to do with experiences that appear to the subject to be external. The knowledge of these
properties is, however, internal and is the result of constructions made internally by the subject.
According to Piaget, this kind of abstraction leads to the extraction of common properties of objects
and extensional generalizations, that is, the passage from “some” to “all”, from the specific to the
general (Piaget & Garcia, 1983, p. 299). We might think, for example of the color of an object, or
its weight. These properties might be considered to reside entirely in the object but one can only
have knowledge of them by doing something (looking at the object in a certain light, hefting it)
and different individuals under different conditions might come to different conclusions about these
properties.

Pseudo–empirical abstraction is intermediate between empirical and reflective abstraction and
teases out properties that the actions of the subject have introduced into objects (Piaget, 1985,
pp.18–19). Consider, for example the observation of a 1–1 correspondence between two sets of
objects which the subject has placed in alignment (ibid, p. 39). Knowledge of this situation may
be considered empirical because it has to do with the objects, but it is their configuration in space
and relationships to which this leads that are of concern and these are due to the actions of the
subject. Again, of course, understanding that there is a 1–1 relation between these two sets is the
result of internal constructions made by the subject.

Finally, reflective abstraction is drawn from what Piaget (1980, pp. 89–97) called the general

coordinations of actions and, as such, its source is the subject and it is completely internal. We
will see many instances of reflective abstraction, but a very early example we can mention now
is seriation, in which the child performs several individual actions of forming pairs, triples, etc.,
and then interiorizes and coordinates the actions to form a total ordering (Piaget, 1972, pp. 37–
38). This kind of abstraction leads to a very different sort of generalization which is constructive
and results in “new syntheses in midst of which particular laws acquire new meaning” (Piaget &
Garcia, 1983, p. 299). An example of this is the concept of euclidean ring which is certainly an
abstraction and generalization. It might be considered, however, to derive from the properties of a
single example–the integers.

We can see, therefore, that these different kinds of abstraction are not completely independent.
The actions that lead to pseudo–empirical and reflective abstraction are performed on objects whose
properties the subject only comes to know through empirical abstraction. On the other hand,
empirical abstraction is only made possible through assimilation schemas which were constructed
by reflective abstraction (Piaget, 1985, pp. 18–19). Consider, for example a physics experiment
which may have the purpose of making an empirical abstraction to obtain factual data about a
certain object. The experiment presupposes, however, an enormous range of logico–mathematical
preliminaries – in deciding how to pose the question, in the construction of apparatus for “indirect
observations” (e.g., triangulation to obtain distances between stars), in the use of particular forms
of measurement, and finally, in setting out the results in logico–mathematical language. All of
these are concepts that must have been constructed using reflective abstraction. (Piaget, 1980, p.

97



91). This mutual interdependence can be roughly summarized as follows. Empirical and pseudo–
empirical abstraction draws knowledge from objects by performing (or imagining) actions on them.
Reflective abstraction interiorizes and coordinates these actions to form new actions and, ultimately
new objects (which may no longer be physical but rather mathematical such as a function or a
group). Empirical abstraction then extracts data from these new objects through mental actions
on them, and so on. This feedback system will be reflected in our extension of these ideas in the
next section.

In empirical abstraction the subject observes a number of objects and abstracts a common prop-
erty. Pseudo–empirical abstraction proceeds in the same way, after actions have been performed on
the object. Reflective abstraction, however, is much more complicated. This is not surprising since,
according to Piaget, “The development of cognitive structures is due to reflective abstraction. . . ”
(Piaget, 1985, p. 143). Before going into the nature of this fundamental process, therefore, we
should say a few things about its importance, in Piaget’s view, to cognitive thought in general and
mathematics in particular.

In two books Piaget (1976, 1978) interpreted the results of many experiments with children
in terms of reflective abstraction. But its role is not restricted to the intellectual development
of children. From Piaget’s psychological viewpoint, new mathematical constructions proceed by
reflective abstraction (Beth & Piaget, 1966, p. 205). Indeed, he considered it to be the method
by which all logico–mathematical structures are derived (Piaget, 1971, p. 342); and that “it alone
supports and animates the immense edifice of logico–mathematical construction” (Piaget, 1980, p.
92).

In support of his position on the role of reflective abstraction in advanced mathematical thinking,
Piaget tried to explain a number of major mathematical concepts in terms of the constructions that
result from this psychological process. These included the idea of Gödel’s incompleteness theorem
(Beth & Piaget, 1966, p. 275), the abstract concept of groups (1980, p. 19), Bourbaki’s attempts to
encompass all of mathematics within three “mother structures” (1970a, p. 24), the general theory
of categories (Piaget 1970b, p. 28), the impossibility of constructing the set of all sets (1970b, pp.
70–71), and the mathematical concept of function (Piaget et al, 1977, p. 168). More generally,
Piaget considered that it is reflective abstraction in its most advanced form that leads to the kind
of mathematical thinking by which form or process is separated from content and that processes
themselves are converted, in the mind of the mathematician, to objects of content (Piaget, 1972,
pp. 63–64 and pp. 70–71).

Returning to the ideas of Piaget, it is important to emphasize that there is no suggestion here
that all (or any) of the advanced mathematics described above is actually done by any kind of
direct application (conscious or otherwise) of reflective abstraction. This was not Piaget’s purpose
in trying to analyze that aspect of thinking. The point, rather, is that when properly understood,
reflective abstraction appears as a description of the mechanism of the development of intellec-
tual thought. It is important for Piaget’s theory that this same process that describes advanced
mathematical thinking appears in cognitive development throughout life from the child’s very first
coordinations that lead to concepts such as number, measurement, multiplication, and proportion
(Piaget, 1972, pp. 70–71). An important ingredient of Piaget’s general theory (on which he worked
for 60 years) that relates biological evolution to the development of intelligence is the idea that re-
flective abstraction is one isolated case of certain very general processes that are found throughout
living creation (Piaget, 1971, p. 331).
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1.2 THE NATURE OF REFLECTIVE ABSTRACTION

As we have seen, reflective abstraction differs from empirical abstraction in that it deals with
action as opposed to objects and it differs from pseudo–empirical abstraction in that it is concerned,
not so much with the actions themselves, but with the interrelationships among actions, which
Piaget (1976, p. 300) called “general coordinations”.

According to Piaget, the first part of reflective abstraction consists of drawing properties from
mental or physical actions at a particular level of thought (Beth & Piaget, 1966, pp. 188–189).
This involves, amongst other things, cognizance or consciousness of the actions (1971, p. 320). It
can also include the act of separating a form from its content (1972, pp. 63–64). Whatever is thus
“abstracted” is projected onto a higher plane of thought (1985, pp. 29–31) where other actions are
present as well as more powerful nodes of thought.

It is at this point that the real power of reflective abstraction comes in for, as Piaget observes,
one must do more than dissociate properties from those which will be ignored or separate a form
from its content (1975a, p. 206). There is “a process which will become increasingly evident over
time: the construction of new combinations by a conjunction of abstractions” (Piaget, 1972, p. 23).

Piaget seemed to feel that this construction aspect of reflective abstraction is more important
than the abstraction (or extraction) aspect (ibid, p. 20). Not only did he assert, as we observed
earlier, that construction of this kind is the essence of mathematical development, and that com-
bining formal structures is a natural extension of the development of thought (ibid, p. 64), but
he also used his analysis of this process to deal with the philosophical question of the nature of
mathematical thought (Beth & Piaget, 1966).

Certainly for our purposes, the construction aspect of reflective abstraction will play the major
role.

1.3 EXAMPLES OF REFLECTIVE ABSTRACTION
IN CHILDREN’S THINKING

We begin with some of Piaget’s examples of reflective abstraction in logico–mathematical thinking
at the earlier ages. This is important because of his insistence on the continuity of development as
part of his search for a single process or set of processes that related to biological development as
well as intellectual development (Piaget, 1971, p. 331). Our suggestion in this chapter is that the
specific construction processes that can be used to build sophisticated mathematical structures can
be found, already, in the thinking of young children.

commutativity of addition. The discovery that the number of objects in a collection is inde-
pendent of the order in which the objects are placed requires first that the child count the
objects, reorder them, count them again, reorder and count, etc. Each of these actions are
interiorized and represented internally in some manner so that the child can reflect on them,
compare them, and realize that they all give the same result (Piaget, 1970a, pp. 16–17).

number. According to Piaget (1941), the concept of number is constructed by coordinating the
two schemas of classification (construction of a set in which the elements are units, indistin-
guishable from each other) and seriation (which, as we observed earlier, is itself a coordination
of the various actions of pairing, tripling, etc.).
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trajectory. The traversal of a path is understood as a coordination of successive displacements
to form a continuous whole (Piaget, 1980, p. 90).

see–saw. The balancing of objects on two sides of a see–saw by a combination of actions on
both sides involves more than just keeping two things in mind at the same time. Because he
observed a considerable delay between the time that a child could create the balance and the
time that the child appeared to understand how he or she had done it, Piaget saw this as a
coordination of two actions into a single system (Piaget, 1978, p. 96).

multiplication. Both psychologically and mathematically, multiplication is the addition of
additions. It is, however, objects that are added in the sense that addition is an operation
applied to something. In order, therefore, to multiply, it is necessary first to encapsulate the
(mental) action of addition into an object (or set of objects) to which addition can be applied
(Piaget, 1985, p. 31).

fluid levels. In an experiment asking children to predict the level to which a known amount of
fluid would rise in a vessel with sloping sides and markings at equal height divisions (Piaget et

al, 1977, chapter 7). Piaget pointed out that this situation is a case of “variation of variations”.
That is, the differential in two vertical markings is a variation, but the amount of change also
varies because of the sloping sides. Hence, the first variation must become an object to which
an action is applied (sloping sides) resulting in a higher order variation.

1.4 VARIOUS KINDS OF CONSTRUCTION
IN REFLECTIVE ABSTRACTION

In considering the above examples of reflective abstraction as methods of construction, we can
isolate four different kinds which will be important for advanced mathematical thinking. We add a
fifth which Piaget considers at length, but was not, for him, part of reflective abstraction.

• With the appearance of the ability to use symbols, language, pictures, and mental images, the
child performs reflective abstractions to represent (Piaget, 1970a, p. 64), that is, to construct
internal processes as a way of making sense out of perceived phenomena. Piaget called this
interiorization (1980, p. 90) and referred to it as “translating a succession of material actions
into a system of interiorized operations” (Beth & Piaget, 1966, p. 206). The commutativity
of addition described above is one example of this. (See also Thompson, 1985a, p. 197.)

• Several of our examples such as trajectory and see–saw involve the composition or coordination
of two or more processes to construct a new one. This is to be distinguished from Piaget’s
phrase, “general coordinations of actions” which refers to all ways of using one or more actions
to construct new actions or objects.

• Multiplication, proportion and variation of variation exemplify the construction which is per-
haps the most important (for mathematics) and most difficult (for students). This is encap-
sulation or conversion of a (dynamic) process into a (static) object. As Piaget put it (1985,
p. 49), “... actions or operations become thematized objects of thought or assimilation”. He

100



considered that “The whole of mathematics may therefore be thought of in terms of the con-
struction of structures,... mathematical entities move from one level to another, an operation
on such ‘entities’ becomes in its turn an object of the theory, and this process is repeated
until we reach structures that are alternately structuring or being structured by “stronger’
structures” (Piaget, 1972, p. 70). From a philosophical point of view, Piaget was applying
the idea of encapsulation to the relativity between form and content when he referred to
“...building new forms that bear on previous forms and include them as contents” and “re-
flective abstractions that draw from more elementary forms the elements used to construct
new forms” (Piaget, 1985, p. 140).

• When a subject learns to apply an existing schema to a wider collection of phenomena, then we
say that the schema has been generalized. This can occur because the subject becomes aware
of the wider applicability of the schema. It can also happen when a process is encapsulated to
an object as, for example, the ratio of two quantities, or addition, so that an existing schema
such as equality or addition can then be applied to it to obtain, respectively, proportion or
multiplication. The schema remains the same except that it now has a wider applicability. The
object changes for the subject in that he or she now understands that it can be assimilated
by the extended schema. Piaget referred to all of this as a reproductive or generalizing
assimilation (1972, p. 23), and he called the generalization extensional (Piaget & Garcia,
1983, p. 299).

• Once a process exists internally, it is possible for the subject to think of it in reverse, not
necessarily in the sense of undoing it, but as a means of constructing a new process which
consists of reversing the original process. Piaget did not discuss this in the context of reflective
abstraction, but rather in terms of the INRC group. We include it as an additional form of
construction.

2. A THEORY OF THE DEVELOPMENT OF CONCEPTS
IN ADVANCED MATHEMATICAL THINKING

2.1 OBJECTS, PROCESSES, AND SCHEMAS

Although, as we have pointed out, Piaget believed that reflective abstraction was as important for
higher mathematics as it was for children’s logical thinking, his research was mainly concerned with
the latter. In order to try to develop the notion of reflective abstraction for advanced mathematical
thinking, we will isolate what seem to be the essential features of reflective abstraction, reflect on
their role in higher mathematics, and reorganize or reconstruct them to form a coherent theory of
mathematical knowledge and its construction.

For us, reflective abstraction will be the construction of mental objects and of mental actions
on these objects. In order to elaborate our theory and relate it to specific concepts in mathematics,
we will use the notion of schema. A schema is a more or less coherent collection of objects and
processes. A subject’s tendency to invoke a schema in order to understand, deal with, organize, or
make sense out of a perceived problem situation is her or his knowledge of an individual concept
in mathematics. Thus an individual will have a vast array of schemas. There will be schemas for
situations involving number, arithmetic, set formation, function, proposition, quantification, proof
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by induction, and so on throughout all of the subject’s mathematical knowledge. Obviously, these
schemas must be interrelated in a large, complex organization. For example, there will be a proof
schema, which can include a schema for proof by induction. This latter in turn could include a
schema for proposition valued functions of the positive integers (see p. 112). Hence there would be
a relation with the schemas for number, for function, and for proposition. On the other hand, there
is a sense in which a proof is an action applied to a proposition, so that the proof schema might be
one of the processes in the proposition schema.

We will also sometimes use the term process or mental process instead of mental action when we
are emphasizing its internal (to the subject) nature. Finally the term object will refer to a mental
or physical object (avoiding any discussion of the nature of the distinction).

One of our goals in elaborating the general theory is to isolate small portions of this complex
structure and give explicit descriptions of possible relations between schemas. When this is done
for a particular concept, we call it a genetic decomposition of the concept. We should also point out
that although we only give, for each concept, a single genetic decomposition, we are not claiming
that this is the genetic decomposition, valid for all students. Rather it represents one reasonable
way that students might use to construct a concept.

It is not easy to separate a description of mathematical knowledge from its construction. As
Piaget put it, “... the problem of knowledge, the so-called epistemological problem, cannot be
considered separately from the problem of the development of intelligence” (Piaget,1975a, p. 166).
It is not possible to observe directly any of a subject’s schemas or their objects and processes.
We can only infer them from our observations of individuals who may or may not bring them to
bear on problems – situations in which the subject is seeking a solution or trying to understand
a phenomenon. But these very acts of recognizing and solving problems, of asking new questions
and creating new problems are the means (in our opinion, essentially the only means) by which a
subjectconstructs new mathematical knowledge.

This is where reflective abstraction comes in. Thus, although we might say that mathematical
knowledge consists of a collection of schemas, we have little to say about how that knowledge exists
inside a person. It does not seem to reside in memory or in a physiological configuration. All we can
say is that a subject will have a propensity for responding to certain kinds of problems in a relatively
(but far from totally) consistent way which we can (as far as our theory has been developed) describe
in terms of schemas. When the subject is successful, we say that the problem has been assimilated
by the schema. When the subject is not successful then, in favorable conditions, her or his existing
schemas may be accommodated to handle the new phenomenon. This is the constructive aspect of
reflective abstraction to which we referred as forming the main object of our concern.

In this sense, the study of reflective abstraction is complementary to investigation of notions
such as epistemological obstacles as studied by Cornu (1983), and Sierpinska (1985a, 1985b) or
the conflict between concept image and concept definition as investigated by Schwarzenberger &
Tall, 1978; Tall & Vinner, 1981; Dreyfus & Vinner, 1982; Vinner, 1983; Tall, 1986a; Vinner &
Dreyfus, 1989. One can think of reflective abstraction as trying to tell us what needs to happen
whereas the other notions attempt to explain why it does not. It is possible that our idea of using
computer experiences (Ayers et al, 1988; Dubinsky, 1990a, 1990b) to help students make reflective
abstractions can be a way of dealing with these obstacles and conflicts. But these are matters for
other investigators and other papers.
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2.2 CONSTRUCTIONS IN ADVANCED MATHEMATICAL CONCEPTS

In the previous section, we isolated five kinds of construction that Piaget found in the devel-
opment of children’s logical thinking: interiorization, coordination, encapsulation, generalization,
and reversal. We will reconsider each of them in the context of advanced mathematical thinking to
describe how new objects, processes and schemas can be constructed out of existing ones.

Some of the following examples will apply to a single one of the five kinds of construction and
others will apply to a combination of two or more of them. Some of the statements we make are
based on observations of students and others are only suppositions, derived as a preliminary to
observations, from the general theory and our knowledge of the mathematics.

As we make these statements about constructions that we have seen students appear to make
or that our investigations suggest they need to make, or as we conjecture that certain concepts
could be constructed in these ways, the reader should be aware that we are not suggesting that it
is automatic, natural, or easy for students to take these steps. An important aspect of the whole
problem of education that we do not consider in this paper is to explain why stunts do or do not
make these particular constructions and what can be done to help them. This is an important issue
for research in mathematics education.

An important part of understanding a function that we have observed is to construct a process
(Dubinsky et al, 1989). For individual examples this means that the subject responds to a situation
in which a function may appear (via formula, as an algorithm, or represented by data) and for
which there is a process by which the value of the function, for a particular value in the domain, is
obtained. Given such a situation, the subject may respond by constructing, in her or his mind, a
mental process relating to the function’s process. This is a prime example of interiorization.

An example of the same kind of mental activity in a completely different mathematical situation
could arise in understanding proofs. When the mathematician exclaims (as which of us has not?)
that “I can understand each step of the proof, but I don’t see the whole picture”, it could be the
case that he or she is expressing the necessity of interiorizing a whole collection of processes and
coordinating them to obtain a single process. The interiorization of the total process can be, in our
opinion, the final step in “making a proof your own”.

Interiorization may not always be diff cult. Most students seem to have little trouble with
constructing a mental process for multiplying a matrix and a vector, or two matrices. This could be
because there is a straightforward “hand–waving” action, used by most teachers, that is a physical
representation of the multiplication and could form an intermediary between the external action and
its interiorization. It seems that mathematics becomes difficult for students when it concerns topics
for which there do not exist simple physical or visual representations. One way in which the use of
computers can be helpful is to provide concrete representations for many important mathematical
objects and processes (see Chapter 14).

Turning now to coordination, one of the most important examples that we have seen occurs in the
formation of the composition of two functions. Based on our research (Ayers et al, 1987; Dubinsky
et al, 1989), we would like to propose the following psychological description. Composition is a
binary operation which means that it acts on two objects to form a third. Thus, it is necessary to
begin with two functions, considered as objects. The subject must “unpack” these objects, reflect
on the corresponding processes, and interiorize them. Then the two processes can be coordinated
to form a new process that can then be encapsulated into an object which is the function that
results from the composition. This is much more complicated than simple substitution and perhaps
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explains why students have so much difficulty with ideas like the chain rule for differentiation, in
which it would be necessary to coordinate this view of composition with the notion of derivative.
It could also explain those results of Ayers et al (1988) in which students seem to improve their
understanding of composition as a result of performing computer tasks designed to foster these
mental operations.

A whole class of examples of that could be described as coordination of schemas in advanced
mathematics is given by the “mixed” structures: topological vector spaces, differentiable manifolds,
homotopy groups, etc.

It is often possible to observe students having difficulty with determining the cardinality of sets
such as

{4, {−3, 2,−1/7}, {{17, 5}}}.

Very often, even undergraduates will think that this set has 6 elements (rather than 3). We suggest
that the difficulty is that the students have not encapsulated the sets {−3, 2,−1/7}, {17, 5} into
objects so as to understand the nested structure of the given set.

The indefinite integral forms an important example that can be interpreted as encapsulation
together with interiorization. Estimating the area under a curve with sums and passing to a limit
is, of course, a process. Students who seem to understand this often have difficulty with the next
step of varying, say, the upper limit of the integral to obtain a function. What is lacking, we suggest,
is the encapsulation of the entire area process into an object which could then vary as one of its
parameters vary. This would then form a “higher–level” process which specifies the function given
by the indefinite integral. The complexity of this total process might then explain why students have
such difficulty with not only the Fundamental Theorem of Calculus, but such powerful definitions
as

log(x) =

∫
x

1

dt

t
, x > 0

A rather pervasive example that can be interpreted as encapsulation in mathematics is duality. The
dual of a vector space, for example, is obtained by considering all of the linear transformations from
the space to its scalar field as objects, collecting them in a set, and introducing a natural algebraic
structure on this set. It seems to us that this is an act of encapsulation that is essential in this
branch of mathematics.

The simplest and most familiar form of reflective abstraction is generalization. According to our
investigations, we can say that a subject’s function schema, in which functions transform numbers,
is generalized to include functions which transform other kinds of objects (once they have been
encapsulated) such as vectors, sets, propositions, or other functions. Similarly it would seem that the
schema of factorization of positive integers can be generalized in this way to factoring polynomials,
and then to an arbitrary euclidean ring. Vectors of dimension two and three can be generalized to
include higher, and even infinite, dimensional vectors. All of these and a host of other examples in
mathematics seem to involve the application of an existing schema, essentially unchanged, to new
objects (which are often the result of encapsulation).

Finally there is reversal of a process. We can mention a number of familiar activities in mathe-
matics that appear to involve the reversal of a process: subtraction and division, solving an equation,

104



inverting a function, proving an inequality (in which one often starts with the conclusion, manipu-
lates until something known to be true is obtained, and then sees if the argument can be reversed),

and the mysterious choice of expressions such as
ε

2
√

M
in proving limit theorems.

2.3 THE ORGANIZATION OF SCHEMAS

In the previous section, we suggested how the construction of various concepts in advanced
mathematics could be described in terms of the five forms of construction in reflective abstraction:
interiorization, coordination, encapsulation, generalization, and reversal. We offer the conjecture
that the construction of all mathematical concepts can be described in these terms. It may be that
additional forms of reflective abstraction will have to be added as additional concepts are considered,
but we suggest that the five given here tell something like the full story.

Of those concepts (mathematical induction and predicate calculus) for which we have made a
more or less complete genetic decomposition (Dubinsky, 1986; Dubinsky, Elterman & Gong, 1988),
our analysis has been greatly influenced by data obtained from observations (interviews, written
tasks, computer work, etc.) of students while they are trying to understand the concept in question.
The genetic decomposition is then derived from a synthesis of these empirical results, our general
theory, and our mathematical knowledge of the concept in question. This is why it takes a long
time and has only been done extensively for two concepts. Work on other concepts (e.g., function,
limit) is proceeding slowly and, we hope, deliberately.

The following description of the organization of a schema is just a summary of what we have seen
in the concepts investigated thus far and, therefore, is somewhat tentative. We give it here in general
terms and then, in the next section, see how it looks in the context of mathematical induction and
predicate calculus. In addition, with more anticipation than certainty, we will suggest how it might
look for the concept of function, after considerably more data has been gathered.

The structure of a schema is displayed in figure 13.
As we have already indicated, one should not think of a schema statically, but rather as a

dynamic activity (or propensity for such activity) by the subject. Moreover, the existence of a
schema is inseparable from its continuous construction and reconstruction. Thus, in describing the
system in Figure 1 we will try to do several things simultaneously: describe what is there, describe
what happens, describe how things are constructed, and refer to some of the examples we have
discussed previously. An additional complication is that, as indicated in the picture, a schema
is not a linear list of items but rather a circular feedback system. Our description, necessarily
linear, must break in at some point. In any case, the following discussion is an alternative way
of organizing the five kinds of construction i analyzed in the previous two sections. Here we also
include the results of the constructions (objects and processes).

We begin with objects. These encompass the full range of mathematical objects: numbers,
variables, functions, topological spaces, topologies, groups, vectors, vector spaces, etc., each of
which must be constructed by an individual at some point in her or his mathematical development.

At any point in time there are a number of actions that a subject can use for calculating with
these objects. These actions go far beyond numerical calculation resulting in numerical answers. The
computation of the homotopy group of a topological space is a calculation. So is the determination
of the (topological) dual of a (locally convex topological) vector space. We will return to this
example a few paragraphs below when we discuss coordination.
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Figure 13: Schemas and their construction
It is possible for a subject to work with actions in ways other than just applying them to objects.

First, an action m ust be interiorized. As we have said, this means that some internal construction
is made relating to the action. An interiorized action is a process. Interiorization permits one
to be conscious of an action, to reflect on it and to combine it with other actions. For example,
the computation of the dual of a particular vector space is an action on that object. The idea,
independent of any particular vector space, that it may have a dual and it can often be computed,
is the process that results from interiorizing this action.

Interiorizing actions is one way of constructing processes. Another way is to work with existing
processes to fonn new ones. This can be done, for example, by reversal. A calculus student may have
interiorized the action of taking the derivative of a function and may be able to do this successfully
with a large number of examples, using various techniques that are often taught and occasionally
learned in calculus courses. If the process is interiorized, the student might be able to reverse it to
solve problems in which a function is given and it is desired to find a function whose derivative is
the original function. This is antidifferentiation or integration, and it too, is first an action and then
must be interiorized to become a process. Encapsulating both the differentiation and integration
processes – at least to the point of having them as objects of reflection – would seem to be an
essential prerequisite for understanding the fundamental theorem of calculus.

Another way of making new processes out of old ones is to compose or coordinate two or more
processes. For example, let us return to the dual of an infinite dimensional vector space and
imagine (this is purely conjectural) how a subject might think about it. A subject may have a
schema (discussed in the previous section) for constructing the dual of a finite dimensional vector
space. If an infinite dimensional vector space comes along, then it seems that exactly the same
schema can be used to construct its dual, as well. We would say that the new phenomenon (infinite
dimensional vector space) has been assimilated to this schema. As mathematical experience goes
further, however, this result would not be very satisfactory, and it is particularly convenient to make
use of topological structures. If there is, in the subject’s schemas, a process for equipping a set with
a topology, then this could be coordinated with the vector space schema to obtain a topological
vector space. Now within a schema for topological space there should be a schema for the concept
of continuous function and within a vector space schema there should be a notion of linear function.
Coordinating continuity and linearity, one can obtain the idea of a continuous linear function. This
coordination would permit the subject to extend and reorganize the process for constructing the
dual of a vector space to apply to the set of those functions from the original set to the scalar field
which are continuous as well as linear, thereby obtaining the topological dual. In such a situation
we would say that the schema for duals has been accommodated to the new phenomena (involving
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topologies) and experiences which made the old schema less than satisfactory.
In addition to using processes to construct new processes, it is also possible to reflect on a

process and convert it into an object. Anytime a set of functions is considered, it seems necessary
to think of the functions in question as objects. Initially, functions are processes and so the subject
must have performed an encapsulation in order to consider them as objects. Iris important, for
example in composition of functions, for the subject to alternate between thinking about the same
mathematical entity as a process and as an object. (cf. p.104.)

A more advanced, and yet more fundamental example where encapsulation may occur is in the
concept of a topology. Initially, there is the notion of nearness or convergence, which is a process.
One of the accomplishments of twentieth century mathematics is to capture this idea with the
device of a collection of subsets (so–called “open sets”) which must satisfy certain conditions but
is otherwise arbitrary. The interaction (really another form of coordination) between, on the one
hand, a collection of sets which may be taken as arbitrary in order to investigate general topological
properties related to but not identical ’ with notions of “nearness”, and on the other hand, a very
specific choice of this collection so as to apply those properties to important concrete situations, say
in analysis, and the use of the resulting observations to stimulate the development of further general
properties, and so on, has led to a great deal of important new mathematics of both abstract and
concrete natures. A key step in this progress may be described as the encapsulation of the process
“nearness” to the object “topology”.

We conclude this section with a recapitulation of our description of the construction of schemas
in the context of the example, already mentioned on several occasions above, of the (topological)
dual of a (topological) vector space. This suggestion of a genetic decomposition for the concept of
dual is totally speculative in the sense that it depends entirely on our theory and our understanding
of the relevant mathematics. We have gathered no data (other than introspection on our own
experience) to support our suggestions. On the other hand, it may be interesting for those with
a background in mathematics to see that our theory at least appears to be reasonably compatible
with a topic from the arena of mathematical research. It is an important point that the same ideas
that described the thinking of young children and adolescents can be used to talk about higher
mathematics.

In the beginning, there are vectors, which are the objects, and actions on vectors including
addition, scalar multiplication and the gathering together of vectors in a set with these operations,
to form a vector space. This is a schema that we assume the subject possesses. We also assume
that the subject has a schema for functions that transform numbers into other numbers.

The first step, according to our con conjecture is to generalize the function schema to include
as a function any process that transforms vectors into scalars. This could then be coordinated with
the addition of vectors and their multiplication by scalars to restrict the functions to processes
that transform vectors into scalars, but preserve the algebraic operations of addition and scalar
multiplication.

We would then say that these functions are encapsulated into objects called linear functionals
and collected together in a single set. At this point we would like to suggest that, although the
assigning of a name like linear functional to a process is closely connected with its encapsulation
into an object, it is the encapsulation that is fundamental and gives “meaning” to the name. To
name processes without encapsulating them is the essence of jargon. When there is a complaint
that a particular discourse has too much terminology and not enough meaning, we feel that the real
difficulty is that labels are being assigned without an opportunity for encapsulating that which is
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being labeled.
In any case, the set of linear functionals can be assimilated to the vector space schema (which

may have to be accommodated to this purpose–that is, it may be necessary to project and recon-
struct this schema on the higher level of a vector space whose elements are linear functionals) by
defining addition and scalar multiplication of these functionals. This can be done very naturally,
interpreting the functions as processes and using “point–wise operations”. In this way, the set of
linear functionals becomes a vector space, called the algebraic dual.

Now comes a major interiorization. What we have been describing is an action applied to a
vector space E that constructs its algebraic dual E∗. When this has been interiorized, one has
constructed the beginning of duality theory. One can reverse the process to look for a “pre–dual”,
that is, given a vector space F , can one find a vector space E whose algebraic dual is F ? (The
answer is yes if E is “finite–dimensional”, but otherwise it may or may not be possible.) Or one can
perform the process twice. When two instantiations are coordinated, one obtains the bidual E∗∗ .
The concept of reflexivity (fairly simple in the case of the algebraic dual) has to do with whether
E = E∗∗.

Next, as we mentioned above, topology and algebra can be coordinated to obtain the concept
of topological vector space and the schema for dual can be projected onto this higher plane and
reconstructed by introducing considerations of continuity, to obtain the topological dual E ′ of a
topological vector space E.

Again the action of constructing the topological dual can be interiorized into a process and
the concepts of pre–dual and reflexivity (much more interesting in the topological case) can be
reconstructed and their properties investigated. Even more interesting, the content of forming the
topological dual can be removed from the form of this process (by reflecting on it) and this would
give rise to the idea of dual pairs < E, F > in which algebra and topology are mixed in free and
varying combinations to obtain the modern theory of dual systems in linear topological spaces.

3. GENETIC DECOMPOSITIONS OF THREE SCHEMAS

We will consider three schemas in some detail: mathematical induction, predicate calculus, and
function. Our goal is to show how the general theory elaborated in the previous section can be used
in possible descriptions of the nature and construction of these specific schemas. Thus in each case
we will point out the relevant objects and processes as well as the instances of reflective abstractions
that seem to us can be used in constructing them.

The details that we are about to present come from our three sources. First, there is the
psychological data that we have gathered through observations of students in the midst of trying to
learn these concepts. These experiments are described in full detail in Dubinsky (1986, in press a,
b), Dubinsky et al (1986, 1989, in press). This data, along with the ideas of Piaget formed the basis
for the derivation of our theory, which is the second source of the genetic decompositions. That is,
for each phenomenon that was observed, we tried to use our theory to describe it, adjusting the
theory when necessary. (As the necessity for adjustment occurs less often, our confidence in the
theory increases.) The third source of the descriptions is our mathematical understanding of the
concepts in question. It seems important that a genetic decomposition should make sense from a
mathematical point of view, although it might not be exactly how the mathematician might have
analyzed the subject in, thinking about how to teach it.

These three sources actually only apply in full to the first two examples: mathematical induction
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and predicate calculus. Because our data, and the analysis that leads to our conclusions, already
appears in the above references, we do not repeat it here. In the case of function, we have begun
to gather data, but our studies were not yet complete at the time of writing and so we make some
mention of it, although very limited. Thus the genetic decomposition of function given here is based
mainly on the theory and our mathematical understanding of function. As such, it must be taken
as speculation that may form a bridge forfuture work. As we obtain and analyze data on students’
learning the conceptof function, it will be interesting to see how close the genetic decomposition
postulated here comes to what is derived when the genetic data are taken into account. In a sense,
this can provide an indication of the predictive value of our theory as it has been developed so far.

3.1 MATHEMATICAL INDUCTION

The aspect of induction that we are interested in has to do with a subject’s understanding of the
induction process, why it “works” to establish something and how to construct an induction proof.
Ultimately, this has to be coordinated with a notion of infinity but it may be that understanding
the induction process is a precursor to constructing a notion of infinity. It would be an interesting
investigation to apply, to the concept of infinity, our method of helping students learn induction
(Dubinsky, 1986, in press).

In the first instance, mathematical induction is a process in that one interiorizes the actions of
moving along (as “n increases”) from one proposition to the next and, after an initial independent
determination, establish the truth of a statement by applying a tool (truth of an implication) that
was previously constructed.

Mathematical induction is also an object in the subject’s general schema forproofs. This means
that the induction process must have been encapsulated in order that the subject can reflect on it,
along with other methods, when confronted with a theorem to prove, so as to select induction as
the method for a particular problem.

The method itself is constructed by working with two major schemas: function and logic. The
developments of these two schemas are intertwined through various coordinations. We can illustrate
the process with a chart as shown in figure 14.

We start with the assumption that the subject possesses a function schema and a logic schema
that are already developed to the point where, for example, the function schema includes the ability
to construct a process relating to a particular transformation of numbers (see §3.3), and the logic
schema can construct statements in the first order propositional calculus (see §3.2). In particular we
assume that the function schema includes the process of evaluation of a function for a given value
in its domain and that the logic schema includes a process for logical necessity, that is, in certain
situations, the subject will understand that if A is true then of necessity B will be true. Of course
we are not asserting that the subject will necessarily be aware of these schemas in this terminology.
Whatwe mean, forexample, is that the subject will be able to think in terms of plugging a value of
a positive integer into a statement and asking if the result is a true statement. This is a function
and we can infer from a subject’s actions that it may exist in her or his mind as a schema–but we
would hardly require young subjects to be aware of it as such in order to understand induction.

The formation of first order propositions is a process in the logic schema which can come from
interiorizing actions (conjunctions, disjunctions, implications, negations) on declarative statements
(objects). The subject can perform a reflective abstraction on this process to obtain new objects
which are the propositions of the first order propositional calculus, on which the same actions can
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be performed. Consider for example, a simple proposition such as, (P ∨ Q) ∧ R where P , Q and R
are simple declarations. The formation of the disjunction P ∨Q can be described as an action on the
statements P , Q. It is not just the action of putting these symbols in this expression. The subject
must also construct a mental image involving the two statements and the determination of the
truth or falsity of the disjunction in various situations. If nothing further is done after this action
is interiorized, then it will not be possible to combine this with R to get the full proposition. First,
the disjunction process must be encapsulated to form a new object (P ∨ Q) which is a statement
that can be conjoined with another statement, such as R. Note how the use of parentheses in
mathematical notation corresponds to encapsulation.

Figure 14: Genetic Decomposition of Mathematical Induction
Iterating this procedure, the subject enriches her or his logic schema to obtain a host of new

objects consisting of first order propositions of arbitrary complexity. Next the function schema
comes in. We are assuming that this schema can be used by the subject to construct processes that
transform numbers (for example an integer) into other numbers. It must be generalized to permit
the subject to construct processes that transform positive integers into propositions, to obtain what
we shall call a proposition valued function of the positive integers. Consider for example, a statement
such as,

Given a number of dollars, it is possible to represent it with $3 chips and $5 chips.
For such a statement, the subject must construct a process whereby, for each positive integer n,

a proposition is constructed which is the same statement, but with “a number of dollars” replaced
by that value of n. This is the proposition valued function. In order to evaluate it, the subject
must construct another process whereby, given n, a search is made and it is determined whether it
is possible to find non–negative integers k, j such that

n = 3j + 5k

It is useful for the subject to discover that the value of this function is true for n = 3, 5, false for
n = 1, 2, 4, 6, 7 and then appears to be true for all higher values.

It is only at this point that the subject can realize that the problem of “proving” the statement
consists of determining that the value of the function is true for all values of n ≥ 8. For this, the
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proof schema can be invoked. If it contains the schema for induction, it can be used, if not, further
(re–)construction must take place. In describing this construction, we reiterate that, in the context
of this theory, it is never clear (nor can it be) whether one is talking about a schema that is present
or one that is being (re–)constructed.

Before going on with the description, there is a side issue that should be considered. Whether
the subject is able to construct a proposition valued function of the positive integers to deal with a
particular statement depends not only on the existence of the schemas we are talking about, but also
may require additional knowledge about the particular situation – so–called “domain knowledge”.
Thus, although the above example of chips is probably well within the domain knowledge of most
students who find themselves trying to learn induction, others may not be. We have found, for
example, that the following statement provides difficulty for university undergraduates,

An integer consisting of 3n identical digits is divisible by 3n.
The trouble could lie in understanding the relationship between the value of an integer and its

representation with digits. It is a sort of “grown– up” version of the difficulty with the concept of
place value and it suggests that many students have not really constructed this concept – at least
in a sufficiently powerful form.

Returning now to the construction of proof by induction, the next development provides an
example of a cognitive step which our research has pointed out as providing a serious difficulty,
whereas if one takes only the mathematical point of view, there is not even a step that needs to be
taken. This is the case even though it relates to an overt difficulty encountered by everyone who
has tried to teach mathematical induction.

We are referring to the notion that the essential point in an induction proof is that one does not
prove the original statement directly, but rather the implication between two statements derived
from it. This is the major difficulty for students. It requires a cognitive step which is not necessary
as a mathematical step. To explain, let us denote by P the proposition valued function to be proved.
Now P (n) can be any proposition, in particular, it can be an implication. Therefore, if we define
the proposition valued function Q by

Q(n) = (P (n) ⇒ P (n + l))

then, from a mathematical point of view there is nothing new in Q, that is, once one understands P
then, as a special case, one understands Q. We have observed, however, that with students, this is
not the case from the cognitive point of view. In the first place, implications are the most difficult
propositions for students and they are generally the last to be encapsulated. Furthermore, there is
a difference between constructing P from a given statement and constructing Q from P . This is the
step which must be taken. If there is some subtlety here, then it might help explain the difficulty
that students have at precisely this point.

To summarize, this step appears to require the encapsulation of the process of implication so
that an implication is an object and can be in the range of a function, the generalization of the
function schema to include implication valued functions, and the interiorization of the process of
going from a proposition valued function of the positive integers to its corresponding implication
valued function.

The next step is to add to the logic schema a process which we shall call modus ponens. This
process is an interiorization of an action applied to implications (assuming as above that they have
been encapsulated into objects). The action consists of beginning at the hypothesis, determining
that it is true, and then “crossing the bridge” to the conclusion and asserting its truth.
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Finally, there is a coordination of the function schema, as it applies to an implication valued
function Q (obtained from a proposition valued function P ) and the logic schema as it applies to
the process modus ponens which has just been constructed. Included in the function schema is the
process of evaluation, that is, sampling values n of the domain (positive integers in this case) and
computing the value of the function, Q(n), that is, P (n) ⇒ P (n + 1). Suppose that it has been
established that Q has the constant value true. The first step in this new process which must be
constructed is to evaluate P at 1 and to determine that P (1) is true (or, more generally, to find a
value n0 such that P (n0) is true). Next, the function Q is evaluated at 1 to obtain P (1) ⇒ P (2).
Applying modus ponens and the fact (just established) that P (1) is true yields the assertion P (2).
The evaluation process is again applied to Q but this time with n = 2 to obtain P (2) ⇒ P (3). Modus
ponens again gives the assertion P (3). This is repeated ad infinitum, alternating the processes of
modus ponens and evaluation. Thus we have a rather complex coordination of two processes that
we believe leads to an infinite process.

This infinite process is encapsulated and added to the proof schema as a new object, proof by
induction.

3.2 PREDICATE CALCULUS

The predicate calculus schema appears to be obtained through a reconstruction of a schema
resulting from coordinating a schema for first order propositional calculus with a function schema
The construction is illustrated in Figure 15. According to this analysis, the objects in the propo-
sitional calculus schema are the propositions. The most important process is the determination of
the truth or falsity of a proposition. Other processes include the formation of new propositions by
the standard logical operations such as conjunction, disjunction, implication and negation. They
also include the process of expressing an English statement in the formal language of symbolic logic
and translating from that syntax back to English. Then of course there are all the usual tasks
that students are asked to perform such as manipulation of the formulas, construction of truth
tables, determination of the validity of arguments and so on. Finally, we can mention the process
of reasoning about a statement, for example, to know if the truth or falsity of the statement

(P ⇒ Q) ∨ ( not(Q ∧ R))

is determined once you know that P ⇒ R is false.
Amongst the various manipulations of logical expressions, one in particular will be important

in the sequel. That is the process of applying the conjunction operation (“and” or ∧) to a set of
propositions as in

(x1 > b1) ∧ (x2 > b2) ∧ . . . ∧ (x
n

> b
n
).

There is a similar process for disjunction (“or” or ∨). This is a manipulation of symbols, but there
is an underlying process connected with the truth value of the resulting proposition.

In a sense, the objects in the first order propositional calculus are constants. In an expression
such as (P ⇒ Q) ∨ not(Q ∧ R)) the quantities P , Q and R are constants whose value may be
unknown, but fixed. The subject’s thinking about such matters can be elevated to a higher plane
when the propositional calculus schema is coordinated with the function schema (appropriately
reconstructed on this higher plane) to consider such an expression as determining a function - in
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this case of the three variables, P , Q and R. This is the beginning of the predicate calculus schema.
Of course, a part of this coordination and reconstruction was discussed already in the previous
section for the special case of proposition valued function of the positive integers.

Figure 15: Genetic Decomposition of Predicate Calculus
As before, an important new process that can be constructed is the iteration (in the subject’s

mind) through the domain of a proposition valued function, checking the truth or falsity of the
resulting proposition for each value of the variable. Consider, for example a t statement such as

Given a car in the parking lot, if the tire fits the car, then the car is red.
Here, tire may be considered to be a constant, but car should be thought of as a variable whose

domain is the set of cars in the parking lot. There is an obvious action of walking through the
parking lot, checking each car to see if the tire fits and, if it does, seeing if the car is red. When
such a statement appears in a mathematical context, as in

Given x ∈ domain(F ), if |x − x0| < δ, then |F (x) − F (x0)| ≤ ε
then the mental process seems to consist in looking at each x ∈ domain(F ) to see if |x−x0| ≤ δ

and, if so, seeing if |F (x) − F (x0)| ≤ ε.
This iteration process must now be coordinated with one of the two processes we mentioned

earlier: applying conjunction or disjunction to a set of propositions. The resulting process can be
encapsulated which leads to a single existential or universal quantification as in

For all cars in the parking lot, if the tire fits the car, then the car is red.
∀x ∈ domain(F ), |x − x0| ≤ δ ⇒ |F (x) − F (x0)| ≤ ε

We call this a single-level quantification.
The single-level quantification creates new objects which are again propositions so that all of the

previous processes of logical operations, negation and reasoning about statements are reconstructed
on this higher plane. Particularly important for understanding many mathematics topics is the
interiorization of a statement given as a quantification. The subject seems to need a strong mental
image of the iteration and quantification process that we have described in order to relate the
statement to the mathematical situation that is being considered.

Next comes two-level quantifications in which two (usually different type) quantifiers are applied
in succession to a proposition valued function of two variables. For example, the statements we
have considered may be extended to obtain,

There is a tire in the library such that for all cars in the parking lot, if the tire fits
the car, then the car is red.

or
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∃δ > 0 such that ∀x ∈ domain(F ), |x − x0| ≤ δ ⇒ |F (x) − F (x0)| ≤ ε.
The process which we just described for constructing single-level quantifications ended with an

encapsulation so that the result becomes a proposition which is a mental object. Note that the
effect of a quantification is to eliminate a variable. If the original proposition valued function had
two variables, then the resulting object actually depends on the value of the other variable and
the schema for single-level quantifications can again be applied to this proposition valued function.
For example, in the case of the tires and cars, the universal quantification over cars results in a
proposition valued function of the single variable, tire. This function can then be subjected to an
existential quantification to obtain a single, constant proposition. Thus, when analyzing a statement
which requires a two-level quantification over two variables, the subject can begin by parsing it into
two quantifications. There is an inner quantification over one of the variables in a proposition valued
function of two variables. There is also an outer quantification over the other variable. What we
have described is a coordination of these two quantifications to obtain a process which will be a
two-level quantification. In order to proceed to higher-level quantifications this new process is again
encapsulated to obtain a new object. Once it is encapsulated, it can then be subjected to the same
processes (thereby generalized) as were the single level quantifications.

Given a statement which is a three-level quantification, such as the definition of continuity of F
at x0,

∀ε > 0, ∃δ > 0 such that ∀x ∈ domain(F ), |x − x0 ≤ δ ⇒ |F (x) − F (x0)| ≤ ε.

the subject can group the two inner quantifications and apply the two-level schema to again obtain
a proposition which depends on the outermost variable (in this case ε). This proposition valued
function is then quantified as before to obtain a single proposition. The entire procedure can now
be repeated indefinitely to obtain quantifications of any level. At each level, the same processes of
logical operations, negation, reasoning, etc. are reconstructed.

3.3 FUNCTION

As we indicated earlier, the thoughts about the function concept given here arebased mainly
on the general theory and our understanding of this concept from the mathematical point of view.
Our purpose for including it and giving some examples of preliminary data is to illustrate the
explanatory power of our theory and to set guideposts for subsequent empirical work. In the past
decade, the function concept has been investigated by a number of authors in ways that are quite
different from the approach described here (see especially Dreyfus & Eisenberg, 1983,1984; Dreyfus
& Vinner, 1982 Vinner & Dreyfus, 1989). For a fuller discussion of research on learning the concept
of function, see chapter 9. For most students, and indeed for many scientists, the idea of function
is completely contained in the “formula”. If you ask students for an example of a function, you will
often get an algebraic expression such as x2 + 3 with no mention of any kind of transformation.
Just as with the concept of variable in which the student insists that x “stands for” a single number
(which may not be known), the concept of function as formula has a very static flavor.

There are a number of ways in which such a function schema is inadequate. For one thing,
the objects are restricted to those functions which can be conveniently expressed with a formula.
This may suffice for elementary mathematics but it will not do for advanced mathematical thinking.
When a function is the same as a formula, the action of evaluation on this object consists of plugging
in numbers for letters and composition of two functions is restricted to substitution of a formula
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for each occurrence of a letter. The notions of domain and range have no place in this schema
and graphs, while manageable in themselves (because of their concrete and visual nature), have no
connection with functions for the student with a function-as-formula schema. When the graph does
not display a clear picture (as is the case with the characteristic function of the irrationals), then
the student is unable to think about it.

A more powerful schema for functions will involve interiorization of actions. When a subject
perceives a situation that can be dealt with in terms of a function, then we suggest that he or she
can view the situation as an action on objects that transforms them into other objects. This action
is interiorized. Thus, an important part of what it means to know a function is to construct a
certain kind of process that can be used to make sense of a certain kind of phenomenon. Some may
refer to this as a mental representation of the function, but we prefer to avoid such terminology
because of its tendency towards the misleading suggestion that the internal process is a copy of some
“external reality”. The important point is that when a function is known as an interiorized process,
then this knowledge has a dynamic flavor which affects the nature of the subject’s interaction with
the function situation.

Evaluation becomes the action of taking a particular value (in the domain of the function) and
performing the process on it to obtain a new value (in the range of the function). It may then
be possible for the subject to coordinate a function’s process and its graph. That is, there is the
understanding that the height of the graph of a function f at a point x on the horizontal axis is
precisely the value f(x). The subject can then relate to the full power of graphing which is the
relationship between the physical shape of the graph and the behavior of the function.

Several important ideas in mathematics can be described as doing some of the things we have
discussed with the process of a function. For example, the coordination of two processes and the
composition of the functions (see Ayers et al,1988). A function’s process can be reversed, thereby
obtaining the inverse function. It is by reflecting on the totality of a function’s process that one
makes sense of the notion of a function being onto. Reflection on the function’s process and the
reversal of that process seem to be involved in the idea of a function being one-to-one.

We have done some preliminary empirical work relative to the points in the preceding paragraph.
We find, for example, that students seem to have more difficulty with the concept of one–to–one
than with onto. We suggest that the presence of the reversal in one–to–one explains this observation.
Similarly on several occasions we have given subjects the following kinds of problems relative to
three specific functions, F , G, H. (See Ayers et al, 1988 for details.)

1. Given F , G find H such that H = F ◦ G.

2. Given G, H find F such that H = F ◦ G.

3. Given F , H find G such that H = F ◦ G.

Of course the first is much easier than the other two, and we find invariably that the third is harder
than the second. We can suggest an explanation derived from our theory. The first kind of problem
seems to require only the coordination of two processes that, presumably, have been interiorized by
the subject. The second, however may require that the following be done for each x in the domain
of H.

2a. Determine what H does to x obtaining H(x).
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2b. Determine what G does to x obtaining G(x).

2c. Construct a process that will always transform G(x) to H(x).

The third kind of problem may be solved by doing the following for each x in the domain of H.

3a. Determine what H does to x obtaining H(x).

3b. Determine value(s) y having the property that the process of F will transform y to H(x).

3c. Construct a process that will transform any x to such a y.

Comparing 2b with 3b (the only point of significant difference), we can see that 2b is a direct
application of the process of G whereas 3b requires a reversal of the process of F .

It is perhaps interesting to note that this difference in difficulty (between 2 and 3), which is
observed empirically and explained epistemologically, is completely absent from a purely mathe-
matical analysis of the two problems. They are, from a mathematical point of view, the calculation
of H ◦ G−1 and F−1 ◦ G, respectively, which appear to be problems of identical difficulty. This
seems to be another important example in which the psychological and mathematical natures of a
problem are not the same (cf. p. 113).

Another situation in which relative difficulty can be explained by the requirement of reversing
a process occurs in the development of children’s ability in arithmetic. According to Riley, Greeno
& Heller (1983, p. 157), “Problems represented by sentences where the unknown is either the first
(? + a = b) or second (a+? = c) number are more difficult than problems represented by equations
where the result is the unknown (a + b =?).” Obviously the first two problem types involve a
reversal of the process which, in the third type, can be applied directly.

A number of important mathematical activities may require that the function schema be re-
constructed at yet a higher level where a function is not only an interiorized process, but as a
result of encapsulation, this process can be treated as an object by the subject. One representation
that could help with this is the set of ordered pairs (with the “uniqueness to the right”condition)
and another is the graph. We refer to chapter 9 for a discussion of some of the difficulties in this
connection. In order for a function to be the result of a mathematical activity (such as solving a
differential equation or setting up an indefinite integral) it must be an object. Similarly, it seems to
us that the elements of a set must be (epistemological) objects and thus, all of functional analysis
with its sets and even structured spaces of functions depends on the object nature of a function.

At the same time, and this may be a further reconstruction of the function schema, it rt seems
necessary in many situations that the subject think of a function simultaneously (or at least in rapid
succession) as both a process and an object. Consider, for example, the various binary operations
on functions such as point–wise addition, point–wise multiplication or composition. In reflecting
on the addition of two functions, the subject must see this as a binary operation which takes two
objects and transforms them in a new, third object. To actually do this, however, it would seem
that the original two objects must be unpacked or “decapsulated” back into processes, these two
processes coordinated (by means of “point–wise addition’) and the resulting process encapsulated
into an object which is the new function that appears as the result of the operation of addition. The
same kind of description can be used, as we have indicated above (see page 104), for composition
of functions:
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As a final example, consider how complex, in these terms, is the following mathematically
straightforward statement.

In the semigroup hom(G, ◦) of endomorphisms of a group G under the operation
of composition, the subset of those endomorphisms which are isomorphisms form a
group.

From our point of view it seems that to understand this statement (and check that it is true)
the subject must think of functions as objects since they form a set, and later a subset, and then
understand composition as we have described it to get a firm grasp on hom(G, ◦). Now, in dealing
with the group axioms, the cognitive interpretation of function goes back and forth between process
and object. The two interpretations must be coordinated in order for the subject to grasp the
somewhat subtle idea that the group identity is the identity function and the group inverse of a
function is its function theoretic inverse – and this connection is not exactly an accident.

4. IMPLICATIONS FOR EDUCATION

We conclude this chapter with some comments on teaching mathematics in light of the theory
we have expounded. Our theory does not have anything to say about the affective aspects of the
teaching/learning situation. In particular, we have ignored Piaget’s notion of equilibration (1985)
which for him was the driving force behind the (re–)construction of schemas. We have also omitted
consideration of various issues such as discovery versus guided learning, and large classes versus
individual instruction versus small–group problem solving. The main implication for education that
our theory has, as far as we have taken it, is that, whatever happens, in or out of the classroom,
the main concern should be with the students’ construction of schemas for understanding concepts.
Instruction should be dedicated to inducing students to make these constructions and helping them
along in the process.

We can offer one general conjecture about motivation. Whatever is the mechanism (le source

according to Piaget & Garcia, 1983) that moves students to make cognitive constructions, to learn,
it seems to us to be a very natural human drive, on a par with the drive for food or sex. We admit
that this suggestion is inconsistent with the experience of most mathematics teachers, especially at
the post secondary level, where students, other than those with obvious talent for mathematics, do
not seem to be interested at all. Our conjecture is that this is due to the overall approach in the
traditional classroom, where the goal, as presented and defended by the teacher, is for the student to
develop skills in computational procedures, to display on examinations, and to “get a good grade”.
For reasons which we will elaborate below, the student cannot learn these procedures through
understanding, whereas he or she is presented by the teacher with a conflict-free way out - imitate
and memorize. Unsurprisingly, most students accept the offer and take this route. But imitation
and memorization do not lead to cognitive constructions and the result is that the students’ desire
to learn through growth is suppressed. He or she is “turned off mathematics”.

Our experience has been that when a student is presented with concepts that he or she is
capable of understanding, when the constructions are possible for the student, and if this capability
is apparent to the student, then a natural drive to learn, to understand, to construct is released and
the level of effort and concentration on mathematical ideas leaves little to be desired. This happens
even in the presence of difficulty, when the student is confronted with mathematical problems that
her or his existing schemas cannot handle. As long as there is something for the student to think
about, as long as he or she perceives that cognitive activity is leading to some sort of growth that
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could, eventually, lead to a solution of the problem, then there is little difficulty in maintaining the
students’ interest.

We will present, therefore, some examples of how traditional teaching methods do not relate to
conceptual understanding as the theory presented here explains it and close with a few brief words
about what directions an alternative approach might take.

4.1 INADEQUACY OF TRADITIONAL TEACHING PRACTICES

If we are correct in our hypotheses that leaming involves applying reflective abstraction to
existing schemas in order to construct new schemas for understanding concepts, then it is a trivial
but critical observation that a schema can not be constructed in the absence of prerequisite existing
schemas. Traditional teaching often ignores this. Consider, for example, a lecture on induction
which begins, “Today, we are going to learn how to make proofs by induction”. This statement
assumes that the listener has a “proof schema”, that is, he or she is conscious of various methods of
proof which could be applied in a given situation and is therefore capable of adding a new one. For
any students in the class who do not possess such a schema, the statement is not very meaningful. It
gets worse when actual problems, theorems to be proved by induction, are introduced. If a student’s
function schema does not include functions that deal with transforming integers into propositions,
then the very statement of a problem can be meaningless. Many students are probably somewhat
bemused when, later, the teacher is roaring the admonition, “You don’t prove the statement for
every n, you prove the implication from n to n + 1!” If proof is meaningful at all, it means that
you prove something. For students who have not encapsulated the n process of implication and
for whom proposition valued functions of the positive integers are not objects, there may be no
“somethings” in that admonition. If such prerequisites are not dealt with, then it is no wonder that
the student gives up on trying to understand (he or she does not have the right tools) and, because
success on examinations is both essential and possible, looks for something to imitate.

Another kind of difficulty arises with the predicate calculus. For many teachers, understanding
the meaning of a statement such as,

For every function f in A there is another function g in A such that f(g(x)) = x for
all x

is essentially a language problem, not very different from understanding statements such as,
Every student in the class has a counselor who will be available to give advice every
Monday at 9 am.

But there is much more than language present—in both statements. For the first, according to
our theory, the student must have constructed (in her or his mind) a set of functions, interiorized
a process of iterating through this set picking an object, iterating again to pick another object,
and converting the two objects back to their function processes so that it is possible to iterate
once again, this time through the domain of the functions, testing the equality. Only after these
constructions are made can the problem be treated linguistically. From our point of view, it is the
constructions that provide the essential difficulties, the language aspect being fairly trivial. Similar
comments can be made about the second statement which most students have little difficulty in
understanding. This is because each construction required to understand the second statement is
made naturally, in the course of normal student life and every day experience.

This point about languages, if generalized, suggests to us that the traditional lecture itself,
depending largely on linguistic transmission, is not very useful in helping students acquire concepts
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in mathematics. Mental objects and processes, although they may well exist in the mind of the
teacher, cannot be transmitted verbally, or even with pictures, to listeners. It is necessary that the
listener engage in active construction.

Another difficulty, related to the problems of imitation, memorization, and verbal transmis-
sion arises with examples. It is an article of faith with most mathematics instructors that “lots
of examples” must be an integral part of any instructional treatment. It is certainly the case
that involvement with examples, whether it be doing exercises or thinking about illustrations and
demonstrations, serves to reinforce the concepts that are present in the mind of the subject. We
suggest, however, that working with examples may not help very much with the construction of con-
cepts. Indeed, we agree with Tall (1986) and it is a major aspect of our theory that understanding
mathematical ideas come from sources other than looking at many examples and “abstracting their
common features”, which is what happens if there is only empirical abstraction. Something more
is needed and we suggest that it is precisely the construction aspects of reflective abstraction that
we have discussed. It is not clear that more than a very few examples are necessary to construct
a concept; in some cases (such as the integers in the initial construction of the concept of a ring)
a single example might suffice to induce appropriate reflective abstraction. As we have said, we
cannot in this chapter give full consideration to the question of how to induce conceptual learning,
but one might well reflect on the contrast between the repetitive examples that seem to be required
by conventional wisdom and the single, representative example which so often seems to be in the
mind of the mathematician who understands a particular concept. Tall (1986) has referred to this
as the generic example and it is a promising notion well worth further investigation.

We would go farther in our critical view of repetitive examples and suggest that practice can
even be harmful. Yes, the effect of practice will be to reinforce structures that are present. But
we would raise the question, what structures are these? Are they part of a student’s concept
image which conflicts with the concept definition (see Tall, 1977)? Consider what happens when
a teacher is explaining, with reference to conceptual understanding, how to solve a certain kind of
problem. As we have indicated, the student may not be able to understand the concept behind the
method. A general investigation of what drives cognitive development may reveal that whenever a
subject is subjected to phenomena, some sort of construction takes place. To say that the student
does not understand could mean that the student has not and does not construct an appropriate
schema for the concept being explained. But if it is the case that something is constructed, then
it would have to be an inappropriate schema. This result is not inconsistent with what teachers
seem to observe in their students after making explanations. What, then, will be the effect of
following the explanation with “lots of examples”. The inescapable conclusion is that the incorrect
interpretations will be reinforced, and teachers will pay a heavy price later on in efforts to correct
students’ misunderstanding. This may well be a source of epistemological obstacles (Cornu,1983).

This argument is not sophistry. It is offered as an explanation of a phenomenon in education
that seems to be generally recognized, but not very well understood. It seems that Van Lehn (1980)
was referring to it quite specifically when he wrote, in a study of the procedural “bugs” observed
in students doing subtraction, “When a student has just invented a bug, practice may solidify the
bug in memory, thus making remediation more difficult” (p. 47). It is possible that this effect also
explains the near impossibility of disavowing undergraduates of various misconceptions observed by
Tall (1986), Corms (1983) and others concerning the concept of limits as well as the persistence, in
the face of a variety of instructional treatments, of reversal errors in algebra (Clement et al, 1981).

It may be argued that these difficulties can be avoided by giving both examples and non–
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examples with the examples graded so as to display various features gradually. This could be
reasonable, but there are dangers. The decomposition should be based on more than the curriculum
developer’s understanding of the mathematics. Also, there is no certainty that the student will see
the examples in the same way that the instructor did. Finally, this really avoids the issue which
is that in order to construct a mathematical idea it is necessary to be mentally active. The really
important issues in mathematics education have to do with the nature of this activity and what
can be done to foster it. We do not conclude from this discussion that practice with examples
should be eliminated. In addition to reinforcing concepts, they may be important for students to
become facile with calculations, to develop a “feeling” that something is wrong, or that it all “hangs
together properly”. Indeed, it is pure speculation but it may be that practice with a process will
tend to induce the subject to encapsulate it. It could be that this is the essential point in the
relationship between procedural knowledge and conceptual knowledge (Hiebert,1986). We do not,
therefore reject examples and practice. We only caution the instructor to pay attention to what
concepts the students have and what exactly is being reinforced when they are set to do “all the
even numbered exercises”. It is also important to be aware of the types of mistakes that a student
makes, how he or she tries to justify an answer (whether it is “correct” or not) or just explain how
it was obtained.

4.2 WHAT CAN BE DONE

At this point we must conclude, not, unfortunately, with a prescription for putting things a right,
but with a brief indication of a research and development prograrn that we are engaged in with
the hope of constructing a viable alternative to traditional practice for helping students develop
advanced mathematical thinking. There are important connections between what is written here
and the ideas found in (Thompson, 1985a; Dreyfus & Thompson, 1985).

Our instructional approach to fostering conceptual thinking in mathematics has four steps.

• Observe students in the process of learning a particular topic or set of topics to see their
developing conceptual structures, that is, their concept images.

• Analyze the data and, using these observations, along with the theory we have elaborated in
this paper and the designer’s understanding of the mathematics involved, develop a genetic
decomposition for each topic of concern that represents one possible way in which a subject
might construct the concept.

• Design instruction that attempts to move the student along the cognitive steps in the genetic
decomposition; develop activities and create situations that will induce students to make the
specific reflective abstractions that are called for.

• Repeat the process, revising the genetic decomposition and the instructional treatment, and
continue as long as possible or until stabilization occurs (if it does).

To this general description we can add the fact that, in designing instruction, we have found
activities with computers to be a major source of student experiences that are very helpful in
fostering reflective abstractions. For example, it seems that if a student implements a process on
a computer, using software that does not introduce programming distractions (such as complex
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syntax, constructs that do not relate to mathematical ideas, etc.), then the student will, as a
result of the work with computers, tend to interiorize the process. If that same process, once
implemented, can be treated on the computer as an object on which operations can be performed,
then the student is likely to encapsulate the process. It turns out to be possible to create such
opportunities for computer experiences relative to reflective abstractions necessary to construct a
wide variety of concepts in mathematics, but that is a topic for another chapter.

We have used this approach to design instruction, with extensive involvement of computers, to
help students learn mathematical induction, predicate calculus and many other topics in discrete
mathematics. Present efforts are directed towards applying the method to functions and to calculus.
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