NAME:

<table>
<thead>
<tr>
<th>Question</th>
<th>Possible Points</th>
<th>Points Earned</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>45</td>
<td></td>
</tr>
</tbody>
</table>
(1) (10 points) For each of the following, give an example if one exists. If there is none, state that there is no example. You do not need to give any justification.

(a) A continous map from C (the cantor set) onto \mathbb{R}.
 Solution: No example. C is compact, \mathbb{R} is not.

(b) A continous function and a compact set A so that $f^{-1}(A)$ is not compact.
 Solution: Let $f : \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = 0$ for every $x \in \mathbb{R}$. Then $A = \{0\}$ is an example.

(c) A nested sequence $A_0 \supseteq A_1 \supseteq A_2 \ldots$ of non-empty closed and bounded subsets of \mathbb{R}^2 with empty intersection.
 Solution: No example. Closed and bounded subsets of \mathbb{R}^2 are compact.

(d) A closed and bounded set A in a complete metric space M so that A is not compact.
 Solution: \mathbb{R}_{disc} (\mathbb{R} with the discrete metric) as a subset of itself.

(e) A finite collection of compact sets A_i so that $A = \bigcup_i A_i$ is not compact.
 Solution: No example. A finite union of compact sets is compact. (Think about why - you can prove it fairly easily using either definition of compactness.)
(2) (10 points)

(a) Let A be compact, $x \in A$. Let (x_n) be a sequence in A such that every convergent subsequence of (x_n) converges to x. Show that (x_n) converges to x.

(b) Show that every compact set is separable (A is separable if there is a countable set $X \subseteq A$ so $A \subseteq \text{cl}(X)$).

Solution: These are homework problems 94 and Prelim 13 respectively. See the homework solutions for solutions.
(3) (10 points)

(a) Give the definition of uniform continuity.

(b) Let $f : M \to N$ be a function. Suppose $M = A \cup B$ and $B_1(x)$ is contained in A or contained in B for every point $x \in M$. Suppose $f|_A$ is uniformly continuous ($f|_A : A \to N$ is given by $f|_A(a) = f(a)$) and $f|_B$ is uniformly continuous. Show that f is uniformly continuous.

(c) Let $f : \mathbb{R} \to \mathbb{R}$ be continuous. Suppose $f(x) = 0$ for all $x \geq 100$ and $f(x) = 0$ for all $x \leq -100$. Show that f is uniformly continuous. (Hint: Use part (b).)

Solutions:

(a) $f : M \to N$ is uniformly continuous if

$$\forall \epsilon > 0 \exists \delta > 0 \forall x \in M \forall y \in M (d_M(x, y) < \delta \to d_N(f(x), f(y)) < \epsilon)$$

(b) Suppose f is uniformly continuous on A and B. Fix $\epsilon > 0$. There are δ_A and δ_B so that for any $x, y \in A$ where $d_M(x, y) < \delta_A$ or $x, y \in B$ where $d_M(x, y) < \delta_B$, the distance $d_N(f(x), f(y)) < \epsilon$. Let $\delta = \min\{\delta_A, \delta_B, 1\}$. Then if $d_M(x, y) < \delta \leq 1$ implies that either $x, y \in A$ or $x, y \in B$. If $x, y \in A$, then $d_M(x, y) < \delta \leq \delta_A$, so $d_N(f(x), f(y)) < \epsilon$. If $x, y \in B$, then $d_M(x, y) < \delta \leq \delta_B$, so $d_N(f(x), f(y)) < \epsilon$. So, we see that $d_M(x, y) < \delta$ implies $d_N(f(x), f(y)) < \epsilon$.

(c) Consider the two sets $A = [-102, 102]$ and $B = (-\infty, -100] \cup [100, \infty)$. Then f is uniformly continuous on A, since A is compact, and f is uniformly continuous on B, since f is constant on B. By part (b), we see that f is uniformly continuous on all of \mathbb{R}.

(4) (15 points) Show that any connected metric space \(M \) containing at least two points is uncountable. (Hint: Let \(a \) and \(b \) be two points in \(M \). Try to show that for any \(\alpha \in [0, 1] \), there is a point \(x \) so \(d(a, x) = \alpha d(a, b) \).)

Solution: Let \(\alpha \in (0, 1) \) be given. Suppose, towards a contradiction that there is no \(x \) so that \(d(a, x) = \alpha d(a, b) \). Then \(B_{\alpha d(a, b)}(a) = C_{\alpha d(a, b)} \). Thus, this is a clopen subset of \(M \). Also, \(a \) is in this set and \(b \) is not. So, it is a proper clopen subset of \(M \). This is a contradiction. So, for each \(\alpha \in (0, 1) \), there is an \(x \) so that \(d(a, x) = \alpha d(a, b) \). These must all be distinct \(x \)’s, so we have found \(\text{Card}([0, 1]) \) different \(x \) in \(M \). Thus \(M \) is uncountable.

Alternatively, and easier, apply the IVT to the function \(d(a, -) \). It hits 0 and it hits \(d(a, b) \), so it must hit every value in between.