Math 222 — Final Exam, fall 97.

IMPORTANT: You do not have to do all the problems, but you must do problems 6 and 7. You must also choose three (i.e. 3) problems from 1–5. Read the problems now, and circle the numbers of the problems you will do in the following box.

<table>
<thead>
<tr>
<th>Your Name</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>total</th>
</tr>
</thead>
</table>

1. Let \(I_n = \int (\tan x)^n \, dx \).

 (a) Show that for any \(n \geq 2 \) one has \(I_n = \frac{(\tan x)^{n-1}}{n-1} - I_{n-2} \).

 (b) Compute \(\int \{ (\tan x)^3 + (\tan x)^2 \} \, dx \).

2. Let \(f(x) = \frac{x^3}{x^2 - 3x + 2} \).

 (a) Find the partial fraction expansion of \(f(x) \) (including the values of the constants.)

 (b) Compute \(\int f(x) \, dx \).

3. Solve the following two differential equations:

 (a) \(\frac{dy}{dx} = \frac{xe^{-x^2}}{\ln y} \).

 (b) \(\frac{dz}{dx} - \tan(x) \, z = \left(\frac{1}{\cos(x)} \right)^3 \).

 (c) Find the solution of equation (b) with \(z(0) = 1 \).

4. Find the radius of convergence of the following two power series.

 (a) \(S_1(x) = \sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!} \)

 (b) \(S_2(x) = \sum_{n=0}^{\infty} \frac{x^n}{2^{2n} + 3^n} \)
5. (a) Find all terms in the Taylor Maclaurin series of \(f(x) = \frac{1}{1 + x^3} \).

(b) Compute the first five terms (i.e. those up to and including \(x^4 \)) of the Taylor-Maclaurin expansion of \(f(x) = \sin x \cos x \).

6. Let \(ABCD \) be a quadrilateral in which \(AB \) and \(CD \) are parallel.
Let \(P \) be the midpoint of \(AB \).
Let \(Q \) be the midpoint of \(CD \).
Denote the position vectors of \(A, B, C, D \) by \(a, b, c, d \), respectively.

(a) Find the position vectors \(p, q \) of \(P \) and \(Q \) in terms of \(a, b, c, d \).

(b) Show that \(PQ \) is parallel to \(AB \).

7. Let \(V \) be the plane with equation \(2x + y + 2z = 2 \), and let \(W \) be the plane with equation \(x + 2y + 2z = 2 \). Let \(P \) be the point with coordinates \(\left(\frac{2}{2}, 0, 2 \right) \).
Let the line \(\ell \) be the intersection of the planes \(V \) and \(W \).

(a) Make a page-size drawing of the \(x, y, z \) axes with the planes \(V, W \) and the point \(P \).

(b) Find the equation of the plane which contains the point \(P \) and the line \(\ell \).

(c) What is the angle between the planes \(V \) and \(W \)? (Note: the angle between two planes is the same as the angle between their normal vectors; it's OK if you only find the Sine or Cosine of this angle.)

(d) Find a vector representation of the line \(m \) which is perpendicular to the plane \(V \), and which goes through the point \(P \).