1. Compute the following integrals

\[A = \int (\sin x)^2 (\cos x)^4 \, dx \quad \text{and} \quad B = \int \frac{dx}{\sqrt{(5 + 4x + x^2)}} \]

2. (a) Does the integral \(\int_0^\infty \frac{x \, dx}{(x + 1)(x^2 + 2)} \) converge?

(b) Compute the integral \(\int_0^\infty \frac{x \, dx}{1 + x^4} \).

3. (a) Write the partial fraction expansion of \(\frac{x}{x^3 - 1} \). You do not have to evaluate the constants.

(b) Find the coefficient of \(\frac{1}{x - 2} \) in the partial fraction expansion of

\[\frac{x^3 - 2x}{(x - 2)(x^2 + 2)^2} \]

4. Dr. Liebowitz’ model for the growth of the XYZ bacterium in his swimming pool states that the relative growth rate of the population is \(\frac{dy}{dt} = \frac{2,000}{10^6 + y^2} \), when the population consists of \(y \) individuals. Thus the population satisfies

\[\frac{dy}{dt} = \frac{2,000y}{10^6 + y^2} \]

If the initial population is \(y(0) = 100 \), then when will the population reach one million?

5. In the following circuit the input and output voltages satisfy

\[C \frac{dV_{\text{out}}}{dt} = \frac{V_{\text{in}}(t) - V_{\text{out}}(t)}{R} \]

where \(R \) is the resistance, \(C \) is the capacitance. Assuming that \(R = C = 1 \), and assuming that the input voltage is given by \(V_{\text{in}}(t) = \sin(\Omega t) \) for some constant \(\Omega \), compute the output voltage at time \(t \).