Problem 1
Consider the function
\[f(x) = \begin{cases} \sqrt{x} \ln x & \text{when } x > 0, \\ 0 & \text{for } x = 0. \end{cases} \]

(a) What would you have to do to check if \(f \) is continuous at \(x = 0 \)?

Is \(f \) continuous at \(x = 0 \)?

(b) Find the maxima and minima of \(f \). Are they absolute?

(c) Does \(f'(0) \) exist? Find \(\lim_{x \to 0} f'(x) \).

(d) Find the inflection points of the graph of \(y = f(x) \).

(e) Does the graph of \(y = f(x) \) have a horizontal asymptote?

Problem 2
Let \(a \) be a positive number.
Consider the function \(f(x) = 2x - \ln(ax) \), which is defined for all \(x > 0 \).
It is given that the graph of \(y = f(x) \) intersects the \(x \)-axis exactly once. Find \(a \).

Problem 3
Compute the following:

(a) \[\int_0^\pi \frac{\sin x}{1 + \cos^2 x} \, dx \]

(b) \[\frac{d}{dx} \left(1 + x^2 \right)^{\arctan x} \]

(c) \[\lim_{x \to 0} \frac{e^{2x} - 2e^x + 1}{\cos x - 1} \]

Problem 4
Let \(R \) be the region of the plane contained between the graphs of \(y = \sqrt{x} \) and \(y = x^4 \), and between the lines \(x = 0 \) and \(x = 1 \).

(a) Calculate the volume of the solid obtained by revolving the region \(R \) around the \(x \)-axis.

(b) What is the volume of the solid obtained by revolving the region \(R \) around the \(y \)-axis.