7. Let \(y^2 = f(x) \) define an elliptic curve \(E \) over \(\mathbb{Q} \), where \(f(x) \in \mathbb{Z}[x] \) is a cubic polynomial.
(a) If \(E \) has good reduction at \(p \), show that
\[
|E(\mathbb{F}_p)| = 1 + p + \sum \left(\frac{f(x)}{p} \right)
\]
where () is the Legendre symbol and the sum is over all \(x \in \mathbb{F}_p \).
(b) Deduce that \(E \) is supersingular (over \(\mathbb{F}_p \)) if and only if the coefficient of \(x^{p-1} \) in \(f(x)^{(p-1)/2} \) is zero. [Hint: calculate \(\sum x^i \) over \(x \in \mathbb{F}_p \)].
(c) Henceforth assume that \(f(x) = x^3 + Dx \). Show that if \((p, 2D) = 1 \), then \(E \) has good reduction at \(p \).
(d) Show that \(E \) is supersingular (over \(\mathbb{F}_p \)) if \(p \equiv 3 \pmod{4} \).
(e) Assuming that the torsion of \(E(\mathbb{Q}) \) injects into \(E(\mathbb{F}_p) \) for \(p \neq 2 \), a prime of good reduction, calculate this torsion in terms of \(D \).
(f) You should have found that \(E(\mathbb{Q}) \) always contains a nontrivial point \(P \) of order 2. In such a situation there is always a unique elliptic curve \(E' \) and a separable isogeny \(\phi : E \to E' \) defined over \(\mathbb{Q} \) such that \(\ker(\phi) = \{O, P\} \), where \(O \) is the point at infinity on \(E \).
Show that if \(E' \) is given by \(y^2 = x^3 - 4Dx \) and \(\phi : E \to E' \) by
\[
\phi(x, y) = \left(\frac{y^2}{x^2}, \frac{y(D - x^2)}{x^2} \right)
\]
then this is such an isogeny. What is \(\deg(\phi) \)? [Remark: this isogeny is useful for calculating the rank of \(E(\mathbb{Q}) \).]

8. Call a smooth projective curve \(C \) over \(\mathbb{F}_q \) maximal if \(|C(\mathbb{F}_q)| = q + 1 + 2g\sqrt{q} \) (\(g \) being its genus).
(a) Show that there are no maximal curves of positive genus over \(\mathbb{F}_2 \).
(b) Show that the Hermitian curve \(x^{q+1} + y^{q+1} + z^{q+1} = 0 \) over \(\mathbb{F}_{q^2} \) is maximal.
(c) If a curve is maximal, what are the \(\alpha_i \) that appear in the numerator of its zeta function?
(d) If \(C \) is a maximal curve over \(\mathbb{F}_q \), compute \(|C(\mathbb{F}_{q^2})| \). Deduce an upper bound for its genus in terms of \(q \). [Remark: maximal curves arise in coding theory and finance applications.]