Math 641, Fall 1999
R.A. Brualdi

Exercise Set 4, * exercises due Friday, October 29, 1999

Let C be an $[n, k, d]$ code. The support of C is the number of coordinates where not all codewords of C equal zero (it is the number of nonzero columns of a generator matrix of C). For $1 \leq r \leq k$ the rth generalized Hamming weight of C is the minimum support of a r-dimensional subcode of C. So d_1 is the minimum support of a 1-dimensional subcode, i.e. the minimum support of a non-zero vector in C, i.e. the minimum weight of a nonzero codeword. The numbers d_1, d_2, \ldots, d_k are called the weight hierarchy of C.

* 1. Prove

$$d = d_1 < d_2 < \cdots < d_k \leq n.$$

* 2. Prove the generalized Singleton bound

$$d_r \leq n - k + r \quad (1 \leq r \leq k),$$

and show that MDS codes meet this bound for all r.

* 3. Determine the weight hierarchy of the $[15, 4, 8]$ binary simplex code and the Reed-Muller code $RM(1, 4)$