Math 240, Spring Semester 2000-01
R.A. Brualdi
Exam 1: March 7, 2001

1. Consider the two integers 177 and 141.
 (a) Determine their GCD (show your work):

 (b) Write the GCD as a linear combination of 177 and 141
 (GCD = $a \cdot 177 + b \cdot 141$ with a and b integers)(show your work):

 (c) The LCM of 177 and 141 (show your work)?

2. Determine the truth value (True, False, or Need More Information) of the following statements:
 (a) If -2 is a positive number, then $\sqrt{-1}$ is a real number.

 \begin{tabular}{ccc}
 TRUE & FALSE & CAN'T SAY \\
 \end{tabular}

 (b) $\exists y \forall x \ 2x - 3y = 5$ (x and y designate real numbers)

 \begin{tabular}{ccc}
 TRUE & FALSE & CAN'T SAY \\
 \end{tabular}

 (f) $\neg(\exists x P(x)) \Rightarrow \forall x (\neg P(x))$

 \begin{tabular}{ccc}
 TRUE & FALSE & CAN'T SAY \\
 \end{tabular}
3. Prove using mathematical induction:

\[3|(4^n + 2) \text{ for all integers } n \geq 1. \]

4. \(N \) balls are distributed into 3 boxes. The smallest value of \(N \) that guarantees that either the first box contains at least 4 balls or the second box contains at least 5 balls or the third box contains at least 6 balls is:
5. Consider the English alphabet of 26 letters including the 5 vowels a, e, i, o, u.
 (a) The number of sets of 7 letters with exactly 3 vowels is:

 (b) The number of different sequences of 7 letters containing 7 distinct letters including exactly 3 vowels is:

6. Solve the recurrence relation

 \[a_n = 2a_{n-1} + 3a_{n-2} \quad (n \geq 3), a_1 = 1, a_2 = 4. \]
7. An urn contains 5 balls of each of the colors R, W, and B (so 15 altogether). The numbers $-4, -1, 1, 2, 3$ are written on each the balls of each color (each number occurs once with each color). Suppose you reach into the urn and grab 3 balls all at once.

(a) The probability that all the ball have different colors is:

(b) The probability that all the balls have the same color is:

(c) Suppose one makes a game out of the above urn whereby drawing a ball pays you in dollars the number on the ball (negative numbers means you pay). If you play this game, say, a 100 times, you would expect to win how much per game?

8. The matrix of the transitive closure of the relation R on \{1, 2, 3, 4, 5\} in which $1R2$, $1R3$, $1R5$, $2R3$, $3R4$, $4R2$, $5R1$ is
9. For each of the following two relations, determine whether they are reflexive, irreflexive, symmetric, antisymmetric, and transitive. If an equivalence relation, determine the partition into equivalence classes.

(a) \(R \) the relation whose matrix is

\[
\begin{bmatrix}
1 & 0 & 1 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 & 1
\end{bmatrix}
\]

Reflexive ... Irreflexive ... Symmetric ... Antisymmetric ... Transitive

Equivalence classes (if applicable) are:

(b) the relation \(R \) on the set of integers \(\{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15\} \)
where \(aRb \) if and only if \(a = b \pm 1 \).

Reflexive ... Irreflexive ... Symmetric ... Antisymmetric ... Transitive

Equivalence classes (if applicable) are: