Complete the following items, staple this page to the front of your work, and turn your assignment in class on Thursday, September 25.

Modular arithmetic

1. Determine the last digit of 3^{400}, then the last two digits. Determine the last digit of 7^{99}.

2. Prove that there are infinitely many primes of the form $4n - 1$.

Solving congruences

3. Prove that if $x^2 \equiv n \pmod{65}$ has a solution, then so does $x^2 \equiv -n \pmod{65}$.

4. Solve the following congruences:
 a. $6x + 3 \equiv 1 \pmod{10}$
 b. $15x \equiv 25 \pmod{35}$
 c. Simultaneously: $x \equiv 1 \pmod{4}$, $x \equiv 7 \pmod{13}$
 d. Simultaneously: $x \equiv 11 \pmod{142}$, $x \equiv 25 \pmod{86}$

Equivalence relations

5. Define a relation on \mathbb{R} as follows: $x \sim y$ if and only if $x - y$ is an integer. Prove that \sim is an equivalence relation and describe the set of equivalence classes.

6. Given a function $f : S \rightarrow T$, consider the following relation on S: $x \sim y \iff f(x) = f(y)$.
 a. Prove that \sim is an equivalence relation.
 b. Prove that if f maps onto T, then there is a one-to-one correspondence between the set of equivalence classes and T.

I discussed these exercises with the following people: