Problem Set 6
Math 541, Fall 2014
Due: Thursday, October 23

Ring homomorphisms and ideals

1. Find all ring homomorphisms:
 a. \(\phi : \mathbb{Z}_2 \rightarrow \mathbb{Z} \)
 b. \(\phi : \mathbb{Z}_2 \rightarrow \mathbb{Z}_6 \)
 c. \(\phi : \mathbb{Z}_6 \rightarrow \mathbb{Z}_2 \)

2. Prove that if \(p \) is prime and \(\phi : \mathbb{Z}_p \rightarrow \mathbb{Z}_p, \phi(a) = a^p \), is a ring homomorphism.

3. Find all ideals in \(\mathbb{Z} \) and in \(\mathbb{Z}_6 \).

4. Let \(R \) be a commutative ring with 1, and let \(a_1, \ldots, a_n \in R \). Show that

\[
\langle a_1, \ldots, a_n \rangle := \{ r_1a_1 + \cdots + r_na_n \mid r_i \in R \text{ for all } i \} \subseteq R
\]

is an ideal in \(R \).

5. Let \(R \) be a commutative ring with 1, and let \(I, J \subset R \) be ideals. Define

\[
I \cap J = \{ a \in R \mid a \in I \text{ and } a \in J \} \quad \text{and} \quad I + J = \{ a + b \in R \mid a \in I, b \in J \}.
\]

a. Prove that \(I \cap J \) and \(I + J \) are ideals.

b. Suppose \(R = \mathbb{Z} \) or \(F[x] \) for a field \(F \), \(I = \langle a \rangle \), and \(J = \langle b \rangle \). Identify \(I \cap J \) and \(I + J \) in terms of \(a \) and \(b \).

c. Let \(a_1, \ldots, a_n \in R \). Prove that \(\langle a_1, \ldots, a_n \rangle = \langle a_1 \rangle + \cdots + \langle a_n \rangle \).

6. Let \(R \) be a commutative ring with 1.

a. Prove that if \(I \subseteq R \) is an ideal and \(1 \in I \), then \(I = R \).

b. Prove that \(a \in R \) is a unit if and only if \(\langle a \rangle = R \).

c. Prove that the only ideals in \(R \) are \(\langle 0 \rangle \) and \(R \) if and only if \(R \) is a field.

I discussed these exercises with the following people: