Quotient rings

1. Give the addition and multiplication tables of \(\mathbb{Z}_2[x]/\langle x^3 + x + 1 \rangle \).

2. Let \(R \) and \(S \) be commutative rings and \(\phi: R \to S \) be a ring homomorphism.
 a. Given an ideal \(J \subseteq S \), define \(\phi^{-1}(J) := \{ a \in R \mid \phi(a) \in J \} \subseteq R \). Prove that this is an ideal in \(R \).
 b. Given an ideal \(I \subseteq R \), define \(\phi(I) := \{ \phi(a) \mid a \in I \} \subseteq S \). Prove that \(\phi(I) \) is an ideal in \(S \), provided that \(\phi \) maps onto \(S \).

3. An element \(a \) of a commutative ring \(R \) is called nilpotent if \(a^n = 0 \) for some positive integer \(n \).
 a. Find the nilpotent elements in \(\mathbb{Z}_8 \).
 b. Find the nilpotent elements in \(\mathbb{Z}_2[x]/\langle x^3 \rangle \).
 c. Show that the collection \(N \) of all nilpotent elements in \(R \) is an ideal.
 d. Show that the quotient ring \(R/N \) has no nonzero nilpotent elements.

Ring isomorphisms

4. a. Prove that the function \(\phi: \mathbb{Q}[\sqrt{2}] \to \mathbb{Q}[\sqrt{2}] \) defined by \(\phi(a + b\sqrt{2}) = a - b\sqrt{2} \) is a ring isomorphism.
 b. Define the function \(\phi: \mathbb{Q}[\sqrt{3}] \to \mathbb{Q}[\sqrt{7}] \) by \(\phi(a + b\sqrt{3}) = a + b\sqrt{7} \). Is \(\phi \) a ring isomorphism? Is there any isomorphism between these rings?

5. Establish the following isomorphisms by using the Fundamental Isomorphism Theorem:
 a. \(\mathbb{R}[x]/\langle x^2 + 6 \rangle \cong \mathbb{C} \)
 b. \(\mathbb{Q}[x]/\langle x^2 + x + 1 \rangle \cong \mathbb{Q}[\sqrt{3}i] \)
 c. \(\mathbb{Z}_3 \times \mathbb{Z}_4 \cong \mathbb{Z}_{12} \)

6. Let \(F \) be a field, \(f(x) \in F[x] \), and \(K \) be a field extension of \(F \) containing the root \(\alpha \) of \(f(x) \).
 a. If \(\sigma: K \to K \) is a ring isomorphism with the property that \(\sigma(a) = a \) for all \(a \in F \), show that \(\sigma(\alpha) \) is likewise a root of \(f(x) \).
 b. Apply (a) to show that the complex roots of a real polynomial occur in conjugate pairs.
 c. Apply (a) to show that if \(n \in \mathbb{N} \) is not a perfect square, and \(\sqrt{n} \) is a root of \(f(x) \in \mathbb{Q}[x] \), then \(-\sqrt{n} \) is a root as well.

I discussed these exercises with the following people: