Name: Evangelos Dimou

Note: Show all your work. No calculators allowed.

1. (10 points) Let \(f(x, y) = x^3 - 3xy + y^3 \).

 (a) Find the critical points of \(f \).
 (b) Use the quadratic approximation to classify the critical points you found as local minima, local maxima, or saddle points.

Solution

(a) We first compute the partial derivatives

\[
\begin{align*}
 f_x(x, y) &= 3x^2 - 3y \\
 f_y(x, y) &= -3x + 3y^2
\end{align*}
\]

and then solve for critical points:

\[
\begin{align*}
 3x^2 - 3y &= 0 \\
-3x + 3y^2 &= 0 \\
\end{align*} \iff \begin{align*}
 x^2 - y &= 0 \\
-x + y^2 &= 0 \\
\end{align*} \iff \begin{align*}
 y &= x^2 \\
 x &= y^2
\end{align*} \iff \begin{align*}
 y &= x^2 \\
 x &= x^4
\end{align*} \iff \begin{align*}
 y &= x^2 \\
 x(1 - x^3) &= 0 \\
\end{align*} \iff x = 0, x = 1
\]

When \(x = 0 \), the first equation gives \(y = 0 \), while when \(x = 1 \), we get \(y = 1 \). Hence the critical points are \((0,0)\) and \((1,1)\).
(b) The quadratic approximation at a critical point \((x_0, y_0)\) gives

\[
f(x, y) - f(x_0, y_0) \\ \approx \frac{1}{2} f_{xx}(x_0, y_0)(x - x_0)^2 + f_{xy}(x_0, y_0)(x - x_0)(y - y_0) + \frac{1}{2} f_{yy}(x_0, y_0)(y - y_0)^2.
\]

Since \(f_{xx}(x, y) = 6x\), \(f_{xy}(x, y) = -3\) and \(f_{yy}(x, y) = -6y\), we have

\[
f(x, y) - f(0, 0) \approx \frac{1}{2} f_{xx}(0, 0) x^2 + f_{xy}(0, 0) xy + \frac{1}{2} f_{yy}(0, 0) y^2
\]
\[= -3xy
\]

But the quadratic form in the last display is clearly indefinite, so \(f\) has a saddle point at \((0, 0)\).

At \((1, 1)\) we have

\[
f(x, y) - f(1, 1)
\]
\[\approx \frac{1}{2} f_{xx}(1, 1)(x - 1)^2 + f_{xy}(1, 1)(x - 1)(y - 1) + \frac{1}{2} f_{yy}(1, 1)(y - 1)^2
\]
\[= \frac{1}{2} 6u^2 - 3uv + \frac{1}{2} 6v^2, \quad \text{where} \quad u = x - 1, \ v = y - 1
\]
\[= 3(u^2 - uv + v^2)
\]
\[= 3 \left[u^2 - uv + \frac{v^2}{4} - \frac{v^2}{4} - v^2 \right]
\]
\[= 3 \left[(u - \frac{v}{2})^2 + \frac{3v^2}{4} \right].
\]

This quadratic form is positive definite, so \(f\) has a local minimum at \((1, 1)\).