Midterm Exam I
Math 234 – Fall 2013 – Lecture 5

Student’s Name:

TA’s Name: ___________________________ Section Number: ____________

Instructions

• Please do not open the exam until you are told to do so.
• Please silence your cell phones.
• You are not allowed to use calculators and notes.
• Please show your work.
• Please raise your hand if you have a question.
• You are not allowed to leave until the 50-minute period is over.
• Please stop working on the exam when you are told to do so.
• May the Force be with you.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>20</td>
</tr>
<tr>
<td>4</td>
<td>20</td>
</tr>
<tr>
<td>5</td>
<td>20</td>
</tr>
</tbody>
</table>

TA/Section	5
extra credits	(/10)
Total	/105
1. Let

\[f(x, y) = \begin{cases} \frac{x^2 y^2 - x^2 - y^2}{x^2 + y^2}, & (x, y) \neq (0, 0), \\ c, & (x, y) = (0, 0). \end{cases} \]

(a) Find \(\lim_{(x,y) \to (0,0)} f(x,y) \) or show that it does not exist.

(b) Is there a value of \(c \) that makes \(f \) continuous at the origin? Why or why not?
2. Let
\[g(x, y) = \frac{(x - y)^2}{2} + 1. \]

- Find and draw the level curves (i.e. contours) \(g^{-1}(1) \) and \(g^{-1}(3) \).
- Find and draw \(\nabla g \) at the points (3, 1) and (-2, 0).

Note: Your drawings must be as accurate as possible.
3. Consider the equation

\[xy^2z + (x + 4y + 2z)^3 = 2. \]

(a) This equation defines \(z \) implicitly as a function of \(x \) and \(y \). Find \(\frac{\partial z}{\partial x} \) and \(\frac{\partial z}{\partial y} \).

(b) The given equation also describes a level surface of a function of \(x, y, z \). Find the equation of the normal line to this surface at the point \((2, -1, 1)\).
4. A bug is crawling on a plane whose temperature at the point \((x, y)\) is given by

\[T(x, y) = 75 + x^2y. \]

(a) Find the rate of change of \(T\) if the bug moves from the point \((2, -1)\) in the
direction of the vector \(\hat{i} - 2\hat{j}\).

(b) In which direction should the bug moves from the point \((2, -1)\) in order to cool
off as quickly as possible? What is the rate of change of \(T\) in that direction?

Note: A direction must be a unit vector.
5. Let

\[h(x, y) = xe^{\sin y}. \]

(a) Find \(h_x, h_y, h_{xx}, h_{yy}, h_{xy}, h_{yx} \).

(b) Find the linear (i.e. first-order) approximation of \(h_y \) near \((3, \pi)\).

Notes:
- Be careful! We are interested in the linear approximation of \(h_y \), not of \(h \).
- Your answer should be a function of \(x \) and \(y \).

(c) Use your result in Part (b) to approximate \(h_y \) at \((\pi, 3)\).

Notes:
- Your answer should be a number. Use \(\pi \approx 3.14 \).
- After the exam, you should use your calculator to check how close your approximation is to the exact value.
Extra credits: In the ball-and-stick model, a methane molecule (CH₄) is said to possess tetrahedral shape. This means that the four hydrogen atoms coincide with the four vertices of a regular tetrahedron, with the carbon atom at the center. (A regular tetrahedron is a solid with four equilateral-triangle faces as shown below. Put another way, the distance between any two of the four vertices of a regular tetrahedron is a constant.) In your chemistry class, you learn that the angle between two arms of this molecule is about 109.5°. (An arm is a stick joining the carbon atom and a hydrogen atom.) Our goal is to compute this angle using our knowledge of vectors.

Credits to Ben Mills (Wikipedia) for the figure on the left.

(a) First we show that a regular tetrahedron can be packed into a cube as follows. Imagine a cube whose eight vertices are at the points (±1, ±1, ±1) and whose center is at the origin. Consider four vertices of this cube:

\[P(1, 1, 1), \quad Q(1, -1, -1), \quad R(-1, 1, -1), \quad S(-1, -1, 1). \]

Show that the distance between any two of these four points is a constant.

Note: This entails finding six distances for six possible pairings of four points.
(b) Your result in Part (a) implies that a regular tetrahedron can be packed into a cube; the four vertices of the regular tetrahedron (i.e. the four hydrogen atoms) are at P, Q, R, S. By symmetry, the center of the regular tetrahedron (i.e. the carbon atom) must be at the origin. Use this information to find the angle between two arms of a methane molecule.

Note: Your answer will be an arccos of a number. After the exam, you should use your calculator to check whether this really is 109.5°.

FOXTROT

How was the big math test?

Outstanding.

Shades of Fall '97

With daring reminders of finals '01.

Imagine the playfulness of a mid-term '99

Coupled with the difficulty of a late '97 or '98.

You know, there's a thin line between connoisseur

And "nut case." Jason.

I still have an old '98 upstairs.

I really should take it again.

Credits to Bill Amend.