Math 321 Quiz 3W October 19, 2011

Name: Evangelos Dimou

Note: Show all your work. No calculators allowed.

1. (a) (1.5 point) Give the implicit cartesian equation of a hyperbola in the xy-plane, having its two vertices on the x-axis. Make a sketch.

 \[\frac{(x-x_c)^2}{a^2} - \frac{y^2}{b^2} = 1 \]

(b) (1.5 point) Give a parametric cartesian equation of the above hyperbola.

 a) \[\frac{(x-x_c)^2}{a^2} - \frac{y^2}{b^2} = 1 \]

 b) Since \(\sec^2 \theta - \tan^2 \theta = 1 \)
we write \(\frac{x-x_c}{a} = \sec \theta \) and \(\frac{y}{b} = \tan \theta \)

 or \(x = x_c + a \sec \theta \)
 \(y = b \tan \theta \)

2. (2 points) In this problem all vectors are functions of \(t \).

 (a) Is the following statement true or false? (No justification needed)

 \[\frac{d}{dt} (\vec{r} \times \vec{\dot{v}}) = \vec{r} \times \frac{d\vec{\dot{v}}}{dt}, \text{ where } \vec{\dot{v}} = \frac{d\vec{r}}{dt} \]

 (b) Complete the identity (No proof needed)

 \[\frac{d}{dt} [(\vec{a} \times \vec{b}) \cdot \vec{c}] = (\frac{d\vec{a}}{dt} \times \vec{b}) \cdot \vec{c} + (\vec{a} \times \frac{d\vec{b}}{dt}) \cdot \vec{c} + (\vec{a} \times \vec{b}) \cdot \frac{d\vec{c}}{dt} \]
3. (5 points) Consider the equation \(\frac{d\vec{r}}{dt} = \vec{\omega} \times \vec{r} \), where \(\vec{\omega} \) is a constant vector, but \(\vec{r} \) depends on \(t \).

(a) Prove that \(\vec{r} \) has constant magnitude. Show all steps.
(b) Show that \(\vec{\omega} \cdot \vec{r} \) is constant.
(c) Show that \(\theta \), the angle between \(\vec{\omega} \) and \(\vec{r} \), is also constant.
(d) Conclude that \(\vec{v} = \frac{d\vec{r}}{dt} \) has constant magnitude.

See solution of Quiz 3M.