(1) Let \(f(\lambda) \in F[\lambda] \) be a monic polynomial of degree \(n \geq 1 \). Let \(E \) be the splitting field of \(f(\lambda) \) over \(F \) and suppose that \(f(\lambda) \) has distinct roots in \(E \). Let \(K_1 \) and \(K_2 \) be subfields of \(E/F \) so that \([K_1 : F][K_2 : F] = [E : F] \).

Let \(G = Gal(E/F) \), \(G_1 = Gal(E/K_1) \) and \(G_2 = Gal(E/K_2) \).

(So \(G_1 \) and \(G_2 \) are subgroups of \(G \).)

Show that
a) \(G_1 \cap G_2 = \{ \epsilon \} \)
b) \(G_1G_2 = G. \)

(2) Suppose that \(E/F \) is a finite extension of degree \(n \).

a) Let \(E'/F' \) be an extension and let \(\phi : F \to F' \) be an isomorphism. Show that the number of extensions of \(\phi \) to a homomorphism of \(E \) to \(E' \) is \(\leq n \).

b) Show that \(|Gal(E/F)| \leq n \).

(3) Let \(f(\lambda) \in \mathbb{Q}[\lambda] \) be given below. Let \(E \) be the splitting field of \(f(\lambda) \) over \(\mathbb{Q} \) and let \(G = Gal(E/\mathbb{Q}) \). Find \(E \) and find \([E : \mathbb{Q}] \).

a) \(f(\lambda) = \lambda^5 - 2 \in \mathbb{Q}[\lambda] \)
b) \(f(\lambda) = \lambda^4 - 4\lambda^2 + 2 \in \mathbb{Q}[\lambda] \) (Hint: Show that \(E \) is generated by a single root of \(f(\lambda) \) in \(E \).)

(4) Let \(E = \mathbb{F}_2(\lambda)/(q(\lambda)) \) where \(q(\lambda) = \lambda^4 + \lambda + 1 \in \mathbb{F}_2(\lambda) \). Then
\[
E = \{ a_0 + a_1 r + a_2 r^2 + a_3 r^3 \mid a_0, a_1, a_2, a_3 \in \mathbb{F}_2 \}
\]
where \(r = \lambda + (q(\lambda)) \). From our previous assignment we know that \(E \) is a field of order 16. Find a generator for the group \(E^\times = \{ u \in E \mid u \neq 0 \} \).

\(^1\)The field generated by \(K_1 \) and \(K_2 \) denoted \(\langle K_1, K_2 \rangle \) is the smallest subfield of \(E \) containing \(K_1, K_2 \).

\(^2\)Recall \(G_1G_2 = \{ g_1g_2 \mid g_1 \in G_1, g_2 \in G_2 \} \). In general it is not a subgroup.