(1) Suppose R is a commutative ring with 1. Suppose K and L are ideals of R (so that they are R-submodules). Show that
\[R/K \cong R/L \text{ as } R\text{-modules} \iff K = L \]

(2) Suppose that R is a PID and M a cyclic module over R. Show that any submodule of M is cyclic. Hint: Use the lattice isomorphism theorem for modules and the structure theorem for cyclic modules.

(3) A column finite matrix is a matrix with infinitely many rows and columns so that each column contains only finitely many nonzero entries. Let R be the ring of all column finite matrices over a field F (with the usual operations of matrix addition and multiplication). Let $M = R$ as an R module. Find a basis of M consisting of 1 element and another basis for M consisting of 2 elements.

(4) Let $R = M_{2 \times 2}(F)$ be the ring of 2×2 matrices over a field F. Let $M = F^2$ (with elements regarded as column matrices). M is an R-module with the usual addition and action by left multiplication. Let $e_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \in M$.

(a) Show that M is a cyclic module with generator e_1.
(b) Find $Ann(M)$ and $Ann(e_1)$.
(c) Is $Ann(e_1)$ an ideal of R?

(5) Suppose that M is an R-module and x is an element of M so that $Ann(x) = \{0\}$. Suppose that $a \in R$. Show that
\[Rx/Rax \cong R/(a). \]
Indicate where you use the fact that $Ann(x) = \{0\}$.