(1) Suppose that E/F is an extension so that $[E:F] = 1$. Show that $E = F$.

(2) Let $u = \cos(\pi/9) \in \mathbb{C}$. Show that u is algebraic over \mathbb{Q} and find the minimal polynomial of u over \mathbb{Q}.

(3) (a) If F is a field and $p = \text{char}(F)$ (see notes) show that either p is 0 or p is a prime.
 (b) If E is an extension of \mathbb{Q} what is $\text{char}(E)$?
 (c) Let p be a prime and let $\mathbb{F}_p = \mathbb{Z}/(p) = \{0, 1, \ldots, p-1\}$ be the field of integers mod p. What is $\text{char}(\mathbb{F}_p)$?

(4) Let $r = \sqrt[3]{5}$. Find the inverse of $1 + r - r^2$ in $\mathbb{Q}(r)$. Express your answer in the form $a_0 + a_1r + a_2r^2$ where $a_0, a_1, a_2 \in \mathbb{Q}$.

(5) Suppose that E/F is an extension. Let K be the set of all elements of E which are algebraic over F. Show that K is a subfield of E. (In the case when E/F is \mathbb{C}/\mathbb{Q}, K is called the field of algebraic numbers.)