That removes irrelevant edges. A large σ leaves only the big picture; a small σ allows a closer look. Pattern recognition is an inverse problem—to recover the coloring book from the finished picture—like recovering the coefficients of a differential equation from its solutions.

EXERCISES

3.3.1 (a) Show that $u = x^3 - 3xy^2$ satisfies Laplace's equation.

(b) Do the same for $s = 4x^3y - 4xy^3$, and explain where this comes in the list of polynomial solutions.

(c) Substitute $x = \cos \theta$ and $y = \sin \theta$ in s and simplify to an expression involving 4θ.

3.3.2 Verify that $u = e^x \cos y$ and $s = e^x \sin y$ both satisfy Laplace's equation, and sketch the equipotentials $u =$ constant and the streamlines $s =$ constant.

3.3.3 *Discrete divergence theorem:* Why is the flow across the “cut” in the figure equal to the sum of the flows from the individual nodes A,B,C,D? *Note:* This is true even if flows like $d_1 - d_6$ from nodes like A are nonzero. If the current law holds and each node has zero net flow, then the exercise says that the flow across every cut is zero.

3.3.4 *Discrete Stokes theorem:* Why is the voltage drop around the large triangle equal to the sum of the drops around the small triangles? *Note:* This is true even if voltage drops like $d_1 + d_2 + d_6$ around triangles like ABC are nonzero. If the voltage law holds and the drop around each small triangle is zero, then the exercise says that $d_1 + d_2 + d_3 + d_4 + d_5 + d_6 = 0$.

3.3.5 On a graph the analogue of the gradient is the edge-node incidence matrix A_0. The analogue of the curl is the loop-edge matrix R with a row for each independent loop and a column for each edge. Draw a graph with four nodes and six directed edges, write down A_0 and R, and confirm that $RA_0 = 0$ in analogy with curl grad $= 0$.

3.3.6 Why does the flow rate $w = (\partial s/\partial y, -\partial s/\partial x)$ satisfy $\text{div } w = 0$ for any “stream function” $s(x,y)$?
3.3.7 If the density is \(c = 1 \) then

\[
\begin{bmatrix}
\frac{\partial s}{\partial y} \\
\frac{-\partial s}{\partial x}
\end{bmatrix}
\]
is equal to \(v = \begin{bmatrix}
\frac{\partial u}{\partial x} \\
\frac{\partial u}{\partial y}
\end{bmatrix} \).

Show from these Cauchy-Riemann equations \(\frac{\partial u}{\partial x} = \frac{\partial s}{\partial y} \) and \(\frac{\partial u}{\partial y} = -\frac{\partial s}{\partial x} \) that both \(u \) and \(s \) satisfy Laplace’s equation.

3.3.8 The curves \(u(x,y) = \text{constant} \) are orthogonal to the family \(s(x,y) = \text{constant} \) if grad \(u \) is perpendicular to grad \(s \). These gradient vectors are at right angles to the curves, which can be equipotentials and streamlines. Construct a suitable \(s(x,y) \) from the geometry and verify

\[
(\text{grad } u)^T (\text{grad } s) = \frac{\partial u}{\partial x} \frac{\partial s}{\partial x} + \frac{\partial u}{\partial y} \frac{\partial s}{\partial y} = 0
\]

(a) \(u(x,y) = y \): equipotentials are parallel horizontal lines

(b) \(u(x,y) = x - y \): equipotentials are parallel 45° lines

(c) \(u(x,y) = \log(x^2 + y^2)^{1/2} \): equipotentials are concentric circles.

3.3.9 A differential equation like \(dy/dx = f(x,y) \) gives a family of curves depending on the initial value \(y(0) \), and \(dy/dx = -1/f(x,y) \) gives the orthogonal curves. (The product of the slopes is \(-1\), the usual condition for a right angle; the gradients are in the orthogonal directions \((1,f)\) and \((1,-1/f)\).) Solve \(y' = -1/f \) for the second family if the first family is

(a) \(y = e^x + \text{constant} \), from \(dy/dx = e^x = f \)

(b) \(y = \frac{1}{2}x^2 + \text{constant} \), from \(dy/dx = x = f \)

(c) \(xy = \text{constant} \), from \(dy/dx = -y/x = f \).

3.3.10 In Stokes’ law (8), let \(v_1 = -y \) and \(v_2 = 0 \) to show that the area of \(S \) equals the line integral \(-\int_C y \, dx\). Find the area of an ellipse \((x = a \cos t, y = b \sin t, x^2/a^2 + y^2/b^2 = 1, 0 \leq t \leq 2\pi)\).

3.3.11 By computing curl \(v \), show that \(v = (y^2, x^2) \) is not the gradient of any function \(u \) but that \(v = (y^2, 2xy) \) is such a gradient—and find \(u \).

3.3.12 By computing div \(w \), show that \(w = (x^2, y^2) \) does not have the form \((\partial s/\partial y, -\partial s/\partial x)\) for any function \(s \). Show that \(w = (y^2, x^2) \) does have that form, and find the “stream function” \(s \).

3.3.13 If \(u = x^2 \) in the square \(S = \{-1 < x, y < 1\} \), verify the divergence theorem (11) when \(w = \text{grad } u \):

\[
\int \int_S \text{div } \text{grad } u \, dx \, dy = \int_C n \cdot \text{grad } u \, ds.
\]

If a different \(u \) satisfies Laplace’s equation in \(S \), what is the net flow through \(C \)?

3.3.14 What potential has the gradient \(v = (u_x, u_y) = (2xy, x^2 - y^2) \)? Sketch the equipotentials and streamlines for flow into a 30° wedge (Fig. 3.7 was 45°), and show that \(v \cdot n = 0 \) on the upper boundary \(y = x/\sqrt{3} \). The streamlines have \(s = xy^2 - \frac{1}{3}x^3 = \text{constant} \).
3.3.15 Solve Poisson's equation \(u_{xx} + u_{yy} = 4 \) by trial and error if \(u = 0 \) on the circle \(x^2 + y^2 = 1 \).

3.3.16 Find a quadratic solution to Laplace's equation if \(u = 0 \) on the axes \(x = 0 \) and \(y = 0 \) and \(u = 3 \) on the curve \(xy = 1 \).

3.3.17 Laplace's equation in polar coordinates is

\[
\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} = 0.
\]

Show that \(u = r \cos \theta + r^{-1} \cos \theta \) is a solution, and express it in terms of \(x \) and \(y \). Find \(v = (u_x, u_y) \) and verify that \(v \cdot n = 0 \) on the circle \(x^2 + y^2 = 1 \). This is the velocity of flow past a circle.

3.3.18 Show that \(u = \log r \) satisfies Laplace's equation except at \(r = 0 \).

3.3.19 Suppose \(\delta P/\delta u = \int \int \left[\frac{\partial u}{\partial x} \frac{\partial v}{\partial x} + \frac{\partial u}{\partial y} \frac{\partial v}{\partial y} - fv \right] \, dx \, dy \). Use Green's formula, changing the \(u \) in (17) to \(v \) and changing \(w \) to grad \(u \), to write

\[
\frac{\delta P}{\delta u} = \int_S v \left[? \right] \, dx \, dy + \int_C v \left[? ? \right] \, ds.
\]

If this is zero for all \(v \), find the differential equation and the natural boundary condition satisfied by \(u \).