displacement takes less force. Such a spring is unstable and stretches like a stick of gum that has reached the point of no return. The pendulum behaves like a soft spring, with $V'(u) = \sin u$ and with a period greater than 2π. Other springs lead to a fascinating problem of phase transition, when $V'(u)$ increases again after decreasing. Then there are two stable phases surrounding the unstable one, and the choice becomes hard to predict.

![Diagram of springs](image)

Fig. 6.6. Hard, soft, and linear springs.

The nonlinear picture is incomplete until damping is allowed. That makes an exact solution more difficult; we lose the integration that took us to E. The energy is not constant. But there is a beautiful method to study the oscillation, called the phase plane, which goes far beyond springs and electrical circuits. We will describe it after testing the equation for stability.

EXERCISES

6.1.1 Solve $u' + u = e^{2t}$, $u' + u = e^{i\omega t}$, $u' + u = e^{-t}$, and $u' + u = 1$ all with $u_0 = 5$. Which solutions go to a steady state u_∞?

6.1.2 If $u' + 2u = (\text{delta function at } t = 1) + c(\text{delta function at } t = 4)$, find the solution from equations (4–5). What choice of c will turn the solution off, so that $u = 0$ for $t > 4$?

6.1.3 Solve $du/dt = u^{1-k}$ with $u_0 = 1$, $k \neq 0$, by separating $u^{k-1}du$ from dt and integrating. When does u blow up if $k < 0$? Which of $u' = u^3$ and $u' = 1/u^3$ can be solved with $u_0 = 0$?

6.1.4 Solve $u' - u \cos t = 1$ with $u_0 = 4$.

6.1.5 Find the general solution to the separable equations

(a) $u' = -tu$ (b) $u' = -u/t$ (c) $uu' = \frac{1}{2} \cos t$

6.1.6 The example $u' = -u/t = 3t$ started from $u_0 = 0$ at $t = 1$. What is the integrating factor e^{-ht}? Multiply the equation by that factor, express the left side as an exact derivative, and integrate from $t = 1$ to find u.
6.1.7 Change signs and solve $u' + u/t = 3t$ with $u(1) = 0$.

6.1.8 Suppose a rumor starts with one person and spreads according to $u' = u(N - u)$. Find $u(t)$ for this logistic equation. At what time T does the rumor reach half of the population ($u(T) = \frac{1}{2} N$)?

6.1.9 Show by differentiating $v = u/(a - bu)$ that if $u' = au - bu^2$ then $v' = av$. The nonlinear logistic equation is linearized by a change of variable.

6.1.10 Differentiate $u' = au - bu^2$ to show that $u'' = (au - bu^2)(a - 2bu)$. Where is the inflection point $u'' = 0$ in Fig. 6.1a, at which the curve changes from convex to concave?

6.1.11 Find the solution with arbitrary constants C and D to

(a) $u'' - 9u = 0$
(b) $u'' - 5u' + 4u = 0$
(c) $u'' + 2u' + 5u = 0$

6.1.12 Find an equation $u'' + pu' + qu = 0$ whose solutions are

(a) e^t, e^{-t}
(b) $\sin 2t, \cos 2t$
(c) $1, t$
(d) $e^{-t} \sin t, e^{-t} \cos t$

6.1.13 (a) What damping constants c in $u'' + cu' + \frac{1}{2} u = 0$ produce overdamping, critical damping, underdamping, no damping, and negative damping?

(b) Find the exponents λ_1, λ_2 and solve with $u_0 = 2$ and $u_0' = -2c$. For which c does $u(t) \to 0$?

6.1.14 Find the undamped forced oscillation (21) for

(a) $u'' + u = \cos 2t$
(b) $u'' + 9u = \cos t$ (sketch u).

6.1.15 Solve with $u_0 = 2$, $u_0' = 0$ and find the steady oscillation (23):

(a) $u'' + 2u' = \cos \omega t$
(b) $u'' + 2u' + 2u = \sin \omega t$

6.1.16 What driving frequency ω will produce the largest amplitude A in equation (24)? For small R this is the “resonant frequency under damping.”

6.1.17 Show that (25) is the same as (24), with $\omega_0^2 = 1/LC$.

6.1.18 (a) Solve $u'' + u' + u = t^2$ by assuming $u = A + Bt + Ct^2$.

(b) If the right side is e^{-t}, find A in $u = Ae^{-t}$

(c) If the right side is $\cos t$, assume $u = A \cos t + B \sin t$.

Note: Exercise 18 uses the method of undetermined coefficients; 19 and 20 add a factor t when A or Ae^{-t} or $A \cos t$ would fail.

6.1.19 (a) Solve $u'' + u' = t^2$ with $u = At + Bt^2 + Ct^3$

(b) Solve $u'' + u' = e^{-t}$ with $u = Ae^{-t}$.

6.1.20 For $u'' + u = \cos t$, show that $u = A \cos t + B \sin t$ fails to give a solution. This is resonance: solve with $u_0 = 0$ and $u_0' = 1$ and $u = C \cos t + D \sin t + At \cos t + Bt \sin t$.

6.1.21 Find the energy $E(u)$ for the equations

(a) $u'' + \frac{1}{2}e^u - \frac{1}{2}e^{-u} = 0$
(b) $u'' + u - u^3 + u^5 = 0$.

If $u_0 = 0$ and $u_0' = 1$, what equation gives the amplitude u_{max}? Are these springs hard or soft?

6.1.22 Suppose $a = 1$ but $b = -1$ in the logistic equation, giving cooperation instead of competition: $u' = u + u^2$. Solve for $u(t)$ if $u_0 = 1$. When does the population become infinite?