Lecture 5: Fundamental equations for equilibrium

The framework discussed last time for graphs is useful in many physical systems:

- x_j: potential at node j (N)
- y_i: flow on edge i (m)

The y_i are determined by the potential difference across the edges and by physical properties of edges. Physical properties usually represented by an $m \times m$ matrix C, often diagonal (c_1, \ldots, c_m).

In any case C is symmetric and y connected to x by A_0 $(m \times N)$.

A_0 gives the geometry of the network.

Use $+1/-1$ edge convention from last lecture.
For network above,

\[A_0 = \begin{pmatrix}
-1 & 1 & 0 & 0 \\
-1 & 0 & 1 & 0 \\
0 & -1 & 1 & 0 \\
0 & -1 & 0 & 1 \\
-1 & 0 & 0 & 1 \\
0 & 0 & -1 & 1
\end{pmatrix} \]

The columns of \(A_0 \) are not linearly independent: cannot get unique solution to \(Ax = b \).

This is the arbitrary potential at each node discussed in last lecture.

To eliminate this ambiguity, ground one node: \(x_N = 0 \).

Then

\[A = \begin{pmatrix}
-1 & 1 & 0 \\
-1 & 0 & 1 \\
0 & -1 & 1 \\
0 & -1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & -1
\end{pmatrix} \]

(drop last column in \(A_0 \))

is \(m \) by \(n = N - 1 \)

\(Ax = b \) has unique solution.

For mechanical networks \(n \) is the total number of degrees of freedom at the nodes, not counting any nodes that are fixed.

(In other words, eliminate fixed nodes for which \(x \) is known.)
The vectors \(b \) and \(f \) cause things to happen.

\(b \) gives voltage sources.

Then: \(e = b - Ax \) will lead to flow.

Ohm's law or Hooke's law is then

\[
y = Ce = C(b - Ax)
\]

Finally, the second fundamental equation is

\[
A^T y = f \quad \text{Kirchhoff's current law}
\]

\(b = 0 \) for Hooke's law

\(f = 0 \)

Note that springs have \(b = 0 \), while circuits have \(f = 0 \).

These can be grouped into the fundamental equations for equilibrium:

\[
\begin{pmatrix}
C^{-1} & A \\
A^T & 0
\end{pmatrix}
\begin{pmatrix}
y \\
x
\end{pmatrix}
=
\begin{pmatrix}
b \\
f
\end{pmatrix}
\]

or

\[
\begin{pmatrix}
C^{-1} & A \\
0 & -A^T C A
\end{pmatrix}
\begin{pmatrix}
y \\
x
\end{pmatrix}
=
\begin{pmatrix}
b \\
f - A^T C b
\end{pmatrix}
\]
So we get m positive pivots and n negative pivots.

For a network,

$$(A^TCA)_{jk} = -c_j \text{ if edge } i \text{ connects } j \neq k$$

$$(A^TCA)_{kk} = \sum c_j \text{ over edges meeting node } k.$$

For our earlier example: $A^TCA = \begin{pmatrix} c_1 + c_2 + c_3 & -c_1 & -c_2 \\ -c_1 & c_1 + c_4 & -c_5 \\ -c_2 & -c_3 & c_2 + c_3 + c_5 \end{pmatrix}$
Lagrange multipliers:

Example: minimize $Q = \frac{1}{2} (y_1^2 + y_2^2)$, subject to the constraint $2y_1 - y_2 = 5$.

Solve this by defining $L = Q + \lambda_1 (2y_1 - y_2 - 5)$.

(Note $L = Q$ when constraint is satisfied)

$\partial L/\partial y_1 = y_1 + 2\lambda_1 = 0$ \hspace{1cm} minimize $L(y_1, y_2, \lambda_1)$

$\partial L/\partial y_2 = y_2 - \lambda_1 = 0$

$\partial L/\partial \lambda_1 = 0 + (2y_1 - y_2 - 5) = 0$ \hspace{1cm} constraint satisfied

Solution is $(y_1, y_2, \lambda_1) = (2, -1, -1)$.

[Diagram showing the intersection of a paraboloid and a line, with a point marked (2, -1).]
Now minimize
\[Q = \frac{1}{2} y^T C y - b^T y \]

with constraint \(A^T y = f \).

Here \(A \) is \(m \times n \), so \(m \) constraints.

Need Lagrange multipliers \(x_1, \ldots, x_m \)

\[L = Q + \sum x^T (A^T y - b) \]

\[\frac{\partial L}{\partial y_i} = \frac{\partial Q}{\partial y_i} + \sum x_j A_{ij} = 0 \quad x^T A^T y = \sum x_j A_{ij} y_j \]

\[\Rightarrow C y - b + A x = 0 \quad \frac{\partial L}{\partial x_i} = \sum x_j A_{ij} \]

\[2(1) = \sum x_j A_{ij} = (A x). \]

Together with the constraint itself, this is

\[
\begin{bmatrix} C^{-1} & A \\ A^T & 0 \end{bmatrix} \begin{bmatrix} y \\ x \end{bmatrix} = \begin{bmatrix} b \\ f \end{bmatrix}
\]

There are the fundamental equations for equilibrium!