1. As another approach to developing a compact method for producing the LU factorization of A, consider the following matrix-oriented approach. Write

$$A = \begin{pmatrix} \hat{A} & d \\ c^T & \alpha \end{pmatrix}, \quad c, d \in \mathbb{R}^{n-1}, \quad \alpha \in \mathbb{R}$$

and \hat{A} square of order $n - 1$. Assume A is nonsingular. As a step in an induction process, assume $\hat{A} = \hat{L}\hat{U}$ is known, with \hat{A} nonsingular. Look for $A = LU$ in the form

$$A = \begin{pmatrix} \hat{L} & 0 \\ m^T & 1 \end{pmatrix} \begin{pmatrix} \hat{U} & q \\ 0 & \gamma \end{pmatrix}, \quad m, q \in \mathbb{R}^{n-1}, \quad \gamma \in \mathbb{R}$$

Show that m, q and γ can be found, and describe how to do so. (This method is applied to an original A, factoring each principle submatrix in the upper left corner, in increasing order.)

2. Let A and B have order n, with A nonsingular. Consider solving the linear system

$$Az_1 + Bz_2 = b_1, \quad Bz_1 + Az_2 = b_2$$

with $z_1, z_2, b_1, b_2 \in \mathbb{R}^n$.

(a) Find necessary and sufficient conditions for convergence of the iteration method

$$Az_1^{(m+1)} = -Bz_2^{(m)} + b_1, \quad Az_2^{(m+1)} = -Bz_1^{(m)} + b_2, \quad m \geq 0$$

(b) Repeat part (a) for the iteration method

$$Az_1^{(m+1)} = -Bz_2^{(m)} + b_1, \quad Az_2^{(m+1)} = -Bz_1^{(m+1)} + b_2, \quad m \geq 0$$

Compare the convergence rates of the two methods.

3. Let C_0 be an approximate inverse to A. Define $R_0 = I - AC_0$, and assume $\|R_0\| < 1$ for some matrix norm. Define the iteration method

$$C_{m+1} = C_m(I + R_m) \quad R_{m+1} = I - AC_{m+1}, \quad m \geq 0$$

This is a well-known iteration method for calculating the inverse A^{-1}. Show the convergence of C_m to A^{-1} by first relating the error $A^{-1} - C_m$ to the residual R_m. And then examine the behavior of the residual R_m by showing $R_{m+1} = R_m^2, \quad m \geq 0$.

1
4. The system $Ax = b,$

$$A = \begin{pmatrix} 4 & -1 & 0 & -1 & 0 & 0 \\
-1 & 4 & -1 & 0 & -1 & 0 \\
0 & -1 & 4 & 0 & 0 & -1 \\
-1 & 0 & 0 & 4 & -1 & 0 \\
0 & -1 & 0 & -1 & 4 & -1 \\
0 & 0 & -1 & 0 & -1 & 4 \end{pmatrix}, \quad b = \begin{pmatrix} 2 \\
1 \\
1 \\
2 \\
2 \\
2 \end{pmatrix}$$

has the solution $x = [1, 1, 1, 1, 1]^T.$ Solve the system using the Jacobi iteration method, and then solve it again using the Gauss-Seidel method. Use the initial guess $x^{(0)} = 0.$ Note the rate at which the iteration error decreases. Find the answers with an accuracy of $\epsilon = .0001.$