Math 753: Week 1

Laurențiu Maxim

October 5, 2013
Chapter 1

Basics of Homotopy Theory

1.1 Homotopy Groups

Definition 1.1.1. For each $n \geq 0$ and X a topological space with $x_0 \in X$, the n-th homotopy group of X is defined as

$$\pi_n(X,x_0) = \{ f : (I^n, \partial I^n) \to (X,x_0) \} / \sim$$

where \sim is the usual homotopy of maps.

Remark 1.1.2. Note that we have the following diagram of sets:

\[\begin{array}{ccc}
(I^n, \partial I^n) & \xrightarrow{f} & (X,x_0) \\
\downarrow & & \downarrow \\
(I^n/\partial I^n, \partial I^n/\partial I^n) & \xrightarrow{g} & (S^n, s_0) \\
\end{array} \]

with $(I^n/\partial I^n, \partial I^n/\partial I^n) \simeq (S^n, s_0)$. So we can also define

$$\pi_n(X,x_0) = \{ g : (S^n, s_0) \to (X,x_0) \} / \sim .$$

Remark 1.1.3. If $n = 0$, then $\pi_0(X)$ is the set of connected components of X. Indeed, we have $I^0 = \text{pt}$ and $\partial I^0 = \emptyset$, so $\pi_0(X)$ consists of homotopy classes of maps from a point into the space X.

Now we will prove several results analogous to the case $n = 1$, which corresponds to the fundamental group.

Proposition 1.1.4. If $n \geq 1$, then $\pi_n(X,x_0)$ is a group with respect to the operation $+$ defined as:

$$(f + g)(s_1, s_2, \ldots, s_n) = \begin{cases}
 f(2s_1, s_2, \ldots, s_n) & 0 \leq s_1 \leq \frac{1}{2} \\
 g(2s_1 - 1, s_2, \ldots, s_n) & \frac{1}{2} \leq s_1 \leq 1
\end{cases}$$
Proof. First note that since only the first coordinate is involved in this operation, the same argument used to prove that π_1 is a group is valid here as well. Then the identity element is the constant map taking all of I^n to x_0 and the inverse element is given by

$$-f(s_1, s_2, \ldots, s_n) = f(1 - s_1, s_2, \ldots, s_n).$$

Proposition 1.1.5. If $n \geq 2$, then $\pi_n(X, x_0)$ is abelian.

Intuitively, since the $+$ operation only involves the first coordinate, if $n \geq 2$, there is enough space to “slide f past g”.

Proof. Let $n \geq 2$ and let $f, g \in \pi_n(X, x_0)$. We wish to show $f + g \simeq g + f$. Consider the following figures:

We first shrink the domains of f and g to smaller cubes inside I^n and map the remaining region to the base point x_0. Note that this is possible since both f and g map to x_0 on the boundaries, so the resulting map is continuous. Then there is enough room to slide f past g inside I^n. We then enlarge the domains of f and g back to their original size and get $g + f$. So we have constructed a homotopy between $f + g$ and $g + f$ and hence $\pi_n(X, x_0)$ is abelian.

Remark 1.1.6. If we view $\pi_n(X, x_0)$ as homotopy classes of maps $(S^n, s_0) \to (X, x_0)$, then we have the following visual representation of $f + g$ (one can see this by collapsing boundaries in the above cube interpretation).
Next recall that if X is path-connected and $x_0, x_1 \in X$, then there is an isomorphism

$$\beta_\gamma : \pi_1(X, x_0) \to \pi_1(X, x_1)$$

where γ is a path from x_0 to x_1, i.e., $\gamma : [0, 1] \to X$ with $\gamma(0) = x_0$ and $\gamma(1) = x_1$. The isomorphism β_γ is given by

$$\beta_\gamma([f]) = [\gamma^{-1} \cdot f \cdot \gamma]$$

for any $[f] \in \pi_1(X, x_0)$.

We next show a similar fact holds for all $n \geq 1$.

Proposition 1.1.7. If $n \geq 1$ and X is path-connected, then there is an isomorphism $\beta_\gamma : \pi_n(X, x_1) \to \pi_n(X, x_0)$ given by

$$\beta_\gamma([f]) = [\gamma \cdot f],$$

where γ is a path in X from x_1 to x_0, and $\gamma \cdot f$ is constructed by first shrinking the domain of f to a smaller cube inside I^n, and then inserting the path γ radially from x_1 to x_0 on the boundaries of these cubes.

Proof. It is easy to check that the following properties hold:

1. $\gamma \cdot (f + g) \simeq \gamma \cdot f + \gamma \cdot g$
2. $(\gamma \cdot \eta) \cdot f \simeq \gamma \cdot (\eta \cdot f)$, for η a path from x_0 to x_1
3. $c_{x_0} \cdot f \simeq f$, where c_{x_0} denotes the constant path based at x_0.

4. β_γ is well-defined with respect to homotopies of γ or f.

Note that (1) implies that β_γ is a group homomorphism, while (2) and (3) show that β_γ is invertible. Indeed, if $\gamma(t) = \gamma(1-t)$, then $\beta_\gamma^{-1} = \beta_\gamma$. □

So, as in the case $n = 1$, if the space X is path-connected, then π_n is independent of the choice of base point. Further, if $x_0 = x_1$, then (2) and (3) also imply that $\pi_1(X, x_0)$ acts on $\pi_n(X, x_0)$:

$$
\pi_1 \times \pi_n \to \pi_n \\
(\gamma, [f]) \mapsto [\gamma \cdot f]
$$

Definition 1.1.8. We say X is an abelian space if π_1 acts trivially on π_n for all $n \geq 1$.

In particular, this means π_1 is abelian, since the action of π_1 on π_1 is by inner-automorphisms, which must all be trivial.

We next show that π_n is a functor.

Proposition 1.1.9. A map $\phi : X \to Y$ induces group homomorphisms $\phi_* : \pi_n(X, x_0) \to \pi_n(Y, \phi(x_0))$ given by $[f] \mapsto [\phi \circ f]$, for all $n \geq 1$.

Proof. First note that, if $f \simeq g$, then $\phi \circ f \simeq \phi \circ g$. Indeed, if ψ_t is a homotopy between f and g, then $\phi \circ \psi_t$ is a homotopy between $\phi \circ f$ and $\phi \circ g$. So ϕ_* is well-defined. Moreover, from the definition of the group operation on π_n, it is clear that we have $\phi \circ (f + g) = (\phi \circ f) + (\phi \circ g)$. So $\phi_*([f + g]) = \phi_*([f]) + \phi_*([g])$. Hence ϕ_* is a group homomorphism. □

The following is a consequence of the definition of the above induced homomorphisms:

Proposition 1.1.10. The homomorphisms induced by $\phi : X \to Y$ on higher homotopy groups satisfy the following two properties:

1. $(\phi \circ \psi)_* = \phi_* \circ \psi_*$.

2. $(id_X)_* = id_{\pi_n(X, x_0)}$.

We thus have the following important consequence:

Corollary 1.1.11. If $\phi : (X, x_0) \to (Y, y_0)$ is a homotopy equivalence, then $\phi_* : \pi_n(X, x_0) \to \pi_n(Y, \phi(x_0))$ is an isomorphism, for all $n \geq 1$.

Example 1.1.12. Consider \mathbb{R}^n (or any contractible space). We have $\pi_i(\mathbb{R}^n) = 0$ for all $i \geq 1$, since \mathbb{R}^n is homotopy equivalent to a point.

The following result is very useful for computations:

Proposition 1.1.13. If $p : \tilde{X} \to X$ is a covering map, then $p_* : \pi_n(\tilde{X}, \tilde{x}) \to \pi_n(X, p(\tilde{x}))$ is an isomorphism for all $n \geq 2$.

4
Proof. First we claim p_* is surjective. Let $x = p(\tilde{x})$ and consider $f : (S^n, s_0) \to (X, x)$. Since $n \geq 2$, we have that $\pi_1(S^n) = 0$, so $f_*\pi_1(S^n, s_0) = 0 \subset p_*\pi_1(\tilde{X}, \tilde{x})$. So f admits a lift, i.e., there is $\tilde{f} : (S^n, s_0) \to (\tilde{X}, \tilde{x})$ such that $p \circ \tilde{f} = f$. Then $[f] = [p \circ \tilde{f}] = p_*([\tilde{f}])$. So p_* is surjective.

\begin{center}
\begin{tikzpicture}
 \node (S) at (0, 0) {(S^n, s_0)};
 \node (X) at (2, 0) {(X, x)};
 \node (Xtilde) at (2, -2) {(\tilde{X}, \tilde{x})};

 \draw[->] (S) to node[above] {f} (X);
 \draw[->] (S) to node[left] {p} (Xtilde);
 \draw[->] (X) to node[left] {f} (Xtilde);
\end{tikzpicture}
\end{center}

Next, we show that p_* is injective. Suppose $[\tilde{f}] \in \ker p_*$. So $p_*([\tilde{f}]) = [p \circ \tilde{f}] = 0$. Let $p \circ \tilde{f} = f$. Then $f \simeq c_x$ via some homotopy $\phi_t : (S^n, s_0) \to (X, x_0)$ with $\phi_1 = f$ and $\phi_0 = c_x$. Again, by the lifting criterion, there is a unique $\tilde{\phi}_t : (S^n, s_0) \to (\tilde{X}, \tilde{x})$ with $p \circ \tilde{\phi}_t = \phi_t$.

\begin{center}
\begin{tikzpicture}
 \node (S) at (0, 0) {(S^n, s_0)};
 \node (X) at (2, 0) {(X, x)};
 \node (Xtilde) at (2, -2) {(\tilde{X}, \tilde{x})};

 \draw[->] (S) to node[above] {ϕ_t} (X);
 \draw[->] (S) to node[left] {p} (Xtilde);
 \draw[->] (X) to node[left] {$\tilde{\phi}_t$} (Xtilde);
\end{tikzpicture}
\end{center}

Then we have $p \circ \tilde{\phi}_1 = \phi_1 = f$ and $p \circ \tilde{\phi}_0 = \phi_0 = c_x$, so by the uniqueness of lifts, we must have $\tilde{\phi}_1 = \tilde{f}$ and $\tilde{\phi}_0 = c_{\tilde{x}}$. Then $\tilde{\phi}_t$ is a homotopy between \tilde{f} and $c_{\tilde{x}}$. So $[\tilde{f}] = 0$. Thus p_* is injective. \qed

Example 1.1.14. Consider S^1 with its universal covering map $p : \mathbb{R} \to S^1$ given by $p(t) = e^{2\pi i t}$. We already know $\pi_1(S^1) = \mathbb{Z}$. If $n \geq 2$, Proposition 1.1.13 yields that $\pi_n(S^1) = \pi_n(\mathbb{R}) = 0$.

Example 1.1.15. Consider $T^n = S^1 \times S^1 \times \ldots \times S^1$, the n-torus. We have $\pi_1(T^n) = \mathbb{Z}^n$. By using the universal covering map $p : \mathbb{R}^n \to T^n$, we have by Proposition 1.1.13 that $\pi_i(T^n) = \pi_i(\mathbb{R}^n) = 0$ for $i \geq 2$.

Definition 1.1.16. If $\pi_n(X) = 0$ for all $n \geq 2$, the space X is called aspherical.

Proposition 1.1.17. Let $\{X_\alpha\}_\alpha$ be a collection of path-connected spaces. Then

$$\pi_n\left(\prod_\alpha X_\alpha\right) \cong \prod_\alpha \pi_n(X_\alpha)$$

for all n.

Proof. First note that a map $f : Y \to \prod_\alpha X_\alpha$ is a collection of maps $f_\alpha : Y \to X_\alpha$. For elements of π_n, take $Y = S^n$ (note that since all spaces are path-connected, we may drop the reference to base points). For homotopies, take $Y = S^n \times I$. \qed
Example 1.1.18. It is a natural question to find two spaces X and Y such that $\pi_n(X) \cong \pi_n(Y)$ for all n, but with X and Y not homotopy equivalent. Whitehead’s Theorem (to be discussed later on) states that if a map of CW complexes $f : X \to Y$ induces isomorphisms on all π_n, then f is a homotopy equivalence. So we must find X and Y so that there is no continuous map $f : X \to Y$ inducing the isomorphisms on π_n’s. Consider $X = S^2 \times \mathbb{R}P^3$ and $Y = \mathbb{R}P^2 \times S^3$. Then $\pi_n(X) = \pi_n(S^2 \times \mathbb{R}P^3) = \pi_n(S^2) \times \pi_n(\mathbb{R}P^3)$. Since S^3 is a covering of $\mathbb{R}P^3$, for all $n \geq 2$ we have that $\pi_n(X) = \pi_n(S^2) \times \pi_n(S^3)$. We also have $\pi_1(X) = \pi_1(S^2) \times \pi_1(\mathbb{R}P^3) = \mathbb{Z}/2$. Similarly, we have $\pi_n(Y) = \pi_n(\mathbb{R}P^2 \times S^3) = \pi_n(\mathbb{R}P^2) \times \pi_n(S^3)$. And since S^2 is a covering of $\mathbb{R}P^2$, for $n \geq 2$ we have that $\pi_n(Y) = \pi_n(S^2) \times \pi_n(S^3)$. Finally, $\pi_1(Y) = \pi_1(\mathbb{R}P^2) \times \pi_1(S^3) = \mathbb{Z}/2$. So $\pi_n(X) = \pi_n(Y)$ for all n. By considering homology groups, however, we see that X and Y are not homotopy equivalent. Indeed, by the Künneth formula, we get that $H_5(X) = 0$ while $H_5(Y) = \mathbb{Z}/2$.

Just like there is a homomorphism $\pi_1(X) \to H_1(X)$, we can also construct homomorphisms $\pi_n(X) \to H_n(X)$ defined by $[f : S^n \to X] \mapsto f_*[S^n]$, where $[S^n]$ is the fundamental class of S^n. A very important result in homotopy theory is the following:

Theorem 1.1.19. (Hurewicz)

If $n \geq 2$ and $\pi_i(X) = 0$ for all $i < n$, then $H_i(X) = 0$ for $i < n$ and $\pi_n(X) \cong H_n(X)$.

Moreover, there is also a relative version of the Hurewicz theorem (see the next section for a definition of the relative homotopy groups), which can be used to prove the following:

Corollary 1.1.20. If X and Y are CW complexes with $\pi_1(X) = \pi_1(Y) = 0$, and a map $f : X \to Y$ induces isomorphisms on all integral homology groups H_n, then f is a homotopy equivalence.