1 Whitehead’s theorem.

Statement: If \(f : X \to Y \) is a map of CW complexes inducing isomorphisms on all homotopy groups, then \(f \) is a homotopy equivalence. Moreover, if \(f \) is the inclusion of a subcomplex \(X \) in \(Y \), then there is a deformation retract of \(Y \) onto \(X \).

For future reference, we make the following definition:

Definition: \(f : X \to Y \) is a Weak Homotopy Equivalence (WHE) if it induces isomorphisms on all homotopy groups \(\pi_n \).

Notice that a homotopy equivalence is a weak homotopy equivalence.

Using the definition of Weak Homotopic Equivalence, we paraphrase the statement of Whitehead’s theorem as:

If \(f : X \to Y \) is a weak homotopy equivalences on CW complexes then \(f \) is a homotopy equivalence.

In order to prove Whitehead’s theorem, we will first recall the homotopy extension property and state and prove the Compression lemma.

Homotopy Extension Property (HEP):

Given a pair \((X,A)\) and maps \(F_0 : X \to Y \), a homotopy \(f_t : A \to Y \) such that \(f_0 = F_0|_A \), we say that \((X,A)\) has (HEP) if there is a homotopy \(F_t : X \to Y \) extending \(f_t \) and \(F_0 \). In other words, \((X,A)\) has homotopy extension property if any map \(X \times \{0\} \cup A \times I \to Y \) extends to a map \(X \times I \to Y \).

Question: Does the pair \(([0,1], \{\frac{1}{n}\}_{n\in\mathbb{N}})\) have the homotopic extension property?

Answer: No.

Compression Lemma: If \((X,A)\) is a CW pair and \((Y,B)\) is a pair with \(B \neq \emptyset \) so that for each \(n \) for which \(X \setminus A \) has \(n \)-cells, \(\pi_n(Y,B,b_0) = 0 \) for all \(b_0 \in B \), then any map \(f : (X,A) \to (Y,B) \) is homotopic to \(f' : X \to B \) fixing \(A \). (i.e. \(f'|_A = f|_A \)).

To prove the compression lemma, we will first prove the following proposition:

Proposition: Any CW pair has the homotopy extension property. In fact, for every CW pair \((X,A)\), there is a deformation retract \(r : X \times I \to X \times \{0\} \cup A \times I \) and we can then define \(X \times I \to Y \) by \(X \times I \to X \times \{0\} \cup A \times I \to Y \).

Proof: We have that \(D^n \times I \xrightarrow{r} X \times \{0\} \cup A \times I \) (where \(r \) is a deformation retraction). For every \(n \), looking at the \(n \)-skeleton \(X_n \) and considering the pair \((X_n, A_n \cup X_{n-1})\), we get that \(X_n \times I = [X_n \times \{0\} \cup (A_n \cup X_{n-1}) \times I] \cup D^n \times I \) where the cylinders \(D^n \times I \) corresponding to \(n \)-cells \(D^n \) in \(X \setminus A \) are glued along \(D^n \times (\{0\} \cup X_{n-1} \times I) \) to the pieces \([X_n \times \{0\} \cup (A_n \cup X_{n-1}) \times I] \). By deforming these cylinders \(D^n \times I \) we get a deformation retraction \(r_n : X_n \times I \to X_n \times \{0\} \cup (A_n \cup X_{n-1}) \times I \). Concatenating these deformation retractions by performing \(r_n \) over \([1 - \frac{1}{2n-1}, 1 - \frac{1}{2n}]\), we get a deformation retraction of \(X \times I \) onto \(X \times \{0\} \cup A \times I \). Continuity follows since CW complexes have the weak topology with respect to their skeleta, so a map is continuous iff its restriction to each skeleton is continuous.
Proof of the Compression Lemma: We will prove this by induction on \(n \).

Assume \(f(X_{k-1} \cup A) \subseteq B \). Let \(e^k \) be a \(k \)-cell in \(X \setminus A \). Look at its characteristic map \(\alpha : (D^k, S^k) \to (X_k, X_{k-1} \cup A) \). Regard \(\alpha \) as an element \([\alpha] \in \pi_k(X_k, X_{k-1} \cup A) \). Looking at \(f_*[\alpha] = [f \circ \alpha] \in \pi_k(Y, B) \) and using the fact that \(\pi_k(Y, B) = 0 \) by our hypothesis (and since \(e^k \in X \setminus A \)), we get a homotopy \(H : (D^k, S^k-1) \times I \to (Y, B) \) such that \(H_0 = f \circ \alpha \) and \(\text{Im}H_1 \subseteq B \).

Performing this process for all the \(k \) cells in \(X \setminus A \) simultaneously, we get a homotopy \(H_k \) from \(f \) to \(f' \) such that \(f'(X_k \cup A) \subseteq B \). Using the homotopy extension property, regard this as a homotopy on all of \(X \). We hence get \(f \simeq f_1 \), such that \(f_1(X_1 \cup A) \subseteq B \), \(f_1 \simeq f_2 \) such that \(f_2(X_2 \cup B) \), and so on.

Define \(H : X \times I \to Y \) as \(H = H_1 \) on \([1 - \frac{1}{2^n} 1 - \frac{1}{n}] \). \(H \) is continuous by CW topology, thus giving us the required homotopy. \(\Box \)

Proof of Whitehead’s Theorem: We can assume \(f \) is an inclusion (by using cellular approximation and the mapping cylinder \(M_f \)). Let \((Y, X)\) be a CW pair. By assumption and the long exact sequence of the pair, we have that \(\pi_n(Y, X) = 0 \) for all \(n \). By applying the compression lemma to the identity map of \((Y, X)\), we get the desired deformation retract \(r : Y \to X \). \(\Box \)

Example: Let \(X = \mathbb{R}P^2 \), \(Y = S^2 \times \mathbb{R}P^\infty \). We know that \(\pi_1(X) = \mathbb{Z}/2\mathbb{Z} = \pi_1(Y) \), \(\pi_n(\mathbb{R}P^2) = \pi_n(S^2) \) for all \(n \geq 2 \).

Also note that, \(\pi_n(S^2 \times \mathbb{R}P^\infty) = \pi_n(S^2) \times \pi_n(\mathbb{R}P^\infty) \), and that \(\pi_n(\mathbb{R}P^\infty) = \pi_n(S^\infty) = 0 \), since \(S^\infty \) is contractible. We hence have that \(\pi_n(S^2 \times \mathbb{R}P^\infty) = \pi_n(S^2) \)

So \(\pi_n(X) = \pi_n(Y) \) for all \(n \geq 1 \). However, \(X \not\simeq Y \) since their second homology groups are unequal, as \(H_2(\mathbb{R}P^2) = 0 \) and \(H_2(S^2 \times \mathbb{R}P^\infty) \neq 0 \). \(\Box \)

Theorem: Weak homotopy equivalence induce isomorphisms on \(H_*(_, G) \) and \(H^*(_, G) \) for any coefficient ring \(G \).

Proof in the simply connected case:

Let \(f : X \to Y \) be a weak homotopy equivalence. By the Universal Coefficient theorem, it is sufficient to show that \(f \) induces isomorphisms on integral homology \(H_*(_ , \mathbb{Z}) \). We can also assume \(f \) is the inclusion map. Since \(f \) is a weak homotopy, via the long exact sequence, we have \(\pi_n(Y, X) = 0 \) for all \(n \). Combining this fact along with the fact that the fundamental group of \(X \) is 0, by using the Hurewicz theorem we get that \(H_n(Y, X) = 0 \) for all \(n \). Hence, using the long exact sequence for homology, we get \(H_n(X) \cong H_n(Y) \). \(\Box \)

Exercise: Show that any finitely generated (abelian when \(n \geq 2 \)) group can be realized as the \(n^{th} \) homotopy group for some space \(X \). \(\Box \)
2 Cellular approximation.

Cellular Approximation: If \(f : X \to Y \) is a continuous map of CW complexes then \(f \) has a cellular approximation \(f' : X \to Y \), i.e. \(f \simeq f' \) such that \(f(X_n) \subseteq Y_n \) for all \(n \geq 0 \). Moreover, if \(f \) is already cellular on some subcomplex \(A \subseteq X \), then we can perform cellular approximation relative to \(A \), i.e. \(f|_A' = f|_A \).

The proof of this relies on the technical lemma which states that if \(f : X \cup e^n \to Y \cup e^k \) (where \(e^n, e^k \) are \(n \) cells and \(k \) cells respectively) such that \(f(X) \subseteq Y \) and \(f|_X \) is cellular and if \(n \leq k \), then \(f \simeq f' \), with \(\text{Im}(f') \subseteq Y \). The technical lemma is used along with induction on skeleta to prove the above result on cellular approximation.

Remark: If \(X \) and \(Y \) are points in the statement of the above lemma then we get that \(S^n \hookrightarrow S^k \) can be homotoped into the constant map \(S^n \to \{ s_0 \} \) for some point \(s_0 \in S^k \).

Relative cellular approximation:

Any map \(f : (X, A) \to (Y, B) \) of CW pairs has a cellular approximation by a homotopy through such maps of pairs.

Proof: First use cellular approximation for \(f|_A : A \to B, f|_A \simeq f' \) where \(f' : A \to B \) is a cellular map. Using the Homotopy Extension Property, we can regard \(H \) as a homotopy on all of \(X \), so we get a map \(f' : X \to Y \) such that \(f'|_A \) is a cellular map. By the second statement of cellular approximation, \(f' \simeq f'' \) where \(f'' : X \to Y \) is a cellular map \(f'|_A = f''|_A \).

3 CW approximation

We are going to show that given any space \(X \) there exists a (unique up to homotopy) CW complex \(Z \), with a weak homotopic equivalence \(f : Z \to X \). Such a \(Z \) is called a CW approximation of \(X \).

Definition: Given a pair \((X, A) \) with \(\emptyset \neq A \subseteq X \), where \(A \) is a CW complex, an \(n \)-connected model of \((X, A) \) is an \(n \)-connected CW pair \((Z, A) \), together with a map \(f : Z \to X \), \(f|_A = id|_A \) so that \(f_* : \pi_i(Z) \to \pi_i(X) \) is an isomorphism for \(i > n \) and is injective when \(i = n \).

Remark: If such models exist, we can take \(A \) to be some point on \(X \), let \(n = 0 \) and we get a cellular approximation \(Z \) of \(X \).

Theorem: Such \(n \)-connected models \((Z, A) \) of a pair \((X, A) \) (with \(A \) is a CW complex) exist. Moreover, \(Z \) can be obtained from \(A \) by attaching cells of dimension greater than \(n \). (Note that from cellular approximation we then have that \(\pi_i(Z, A) = 0 \) for \(i \leq n \)).

We will prove this theorem after proving two following corollaries:

Corollary: Any pair of spaces \((X, X_0) \) has a CW approximation \((Z, Z_0) \).

Proof: Let \(f_0 : Z_0 \to X_0 \) be a CW approximation of \(X_0 \). Consider the map \(g : Z_0 \to X \) defined by the composition of \(f_0 \) and the inclusion map \(X_0 \hookrightarrow X \). Consider the mapping
cylinder M_g of g, i.e. $M_g = (Z_0 \times I) \sqcup X/(z_0, 1) \sim g(z_0)$. We hence get the sequence of maps $Z_0 \hookrightarrow M_g \rightarrow X$ where the map $M_g \rightarrow X$ is a deformation retract.

Now, let (Z, Z_0) be a 0-connected CW model of (M_g, Z_0). Consider the triangle:

$$(Z, Z_0) \longrightarrow (M_g, Z_0) \downarrow (X, X_0).$$

This gives us a map $f : Z \rightarrow X$ that is obtained by composing the weak homotopy equivalence $Z \rightarrow M_g$ and the deformation retract (hence homotopy equivalence) $M_g \rightarrow X$. In other words, f is a weak homotopy equivalence and $f |_{Z_0} = f_0$, thus proving the result.

Corollary: For each n-connected CW pair (X, A) there is a CW pair (Z, A) that is homotopy equivalent to (X, A) relative to A such that Z is built from A by attaching cells of dim $> n$.

Proof: take (Z, A) to be an n-connected model of (X, A). We claim: $Z \xrightarrow{h.e.} X$ relative A. In fact, there exists $f : Z \rightarrow X$ such that f_* is an isomorphism on π_i when $i > n$ and is injective on π_n. For $i < n$, by the n-connectedness of the given model, $\pi_i(X) \cong \pi_i(A) \cong \pi_i(Z)$ where the isomorphisms are induced by f since the following diagram commutes,

$$
\begin{array}{ccc}
Z & \xrightarrow{f} & X \\
\uparrow & & \uparrow \\
A & \xrightarrow{id} & A
\end{array}
$$

(where the maps $A \hookrightarrow Z$ and $A \hookrightarrow X$ are inclusion maps.) For $i = n$, by n-connectedness we have the surjective maps:

$$
\pi_n(A) \xrightarrow{onto} \pi_n(Z) \xrightarrow{inj} \pi_n(X)
$$

So the induced map $f_* : \pi_n(A) \rightarrow \pi_n(X)$ is surjective. This, coupled with the Whitehead’s Theorem allows us to conclude that $f : Z \rightarrow X$ is a homotopy equivalence.

We make f stationary on A in the following way: define $W_f := M_f/\{a\} \times I \sim pt, \forall a \in A$ and look at the map $h : Z \rightarrow X$ given by the composition of $Z \hookrightarrow W_f \rightarrow X$ where the map from $W_f \rightarrow X$ is a deformation retract.

Claim: Z is a deformation retract of W_f, thus giving us that h is a homotopy equivalence relative to A. Proof of claim: We have $\pi_i(W_f) \cong \pi_i(X)$ (since W_f is a deformation retract of X) and $\pi_i(X) \cong \pi_i(Z)$ since X is homotopy equivalent to Z. Using Whitehead’s theorem, we conclude that Z is a deformation retract of W_f.

Proof of the theorem on cellular approximation: Construct Z as a union of subcomplexes $A = Z_n \subseteq Z_{n+1} \subseteq ...$ such that for each $k \geq n + 1$, Z_k is obtained from Z_{k-1} by attaching k-cells.

We will show by induction that we can construct Z_k with a map $f_k : Z_k \rightarrow X$ such that $f_k|_A = id|_A$ and f_k is injective on π_i for $n \leq i < k$ and onto on π_i for $n < i \leq k$. We start the induction at $k = n$, $Z_n = A$, in which case the conditions on π_i are void.
Induction step: \(k \to k + 1 \). Consider \(\{ \phi_\alpha \}_\alpha \) where \(\phi_\alpha : S^k \to Z_k \) is the generator of \(\ker[f_k : \pi_k(Z_k) \to \pi_k(X)] \). Define \(Y_{k+1} := Z_k \cup \bigcup_{\alpha} e^{k+1}_\alpha \),

where \(e^{k+1}_\alpha \) is a \((k + 1)\) cell attached to \(Z_k \) along \(\phi_\alpha \).

Then \(f_k : Z_k \to X \) extends to \(Y_{k+1} \). Indeed, \(f \circ \phi_\alpha : S^k \to Z_k \to X \) is nullhomotopic, since \([f \circ \phi_\alpha] = f_k[\phi_\alpha] = 0 \). We hence get a map \(g : Y_{k+1} \to X \). It’s easy to check that the map is injective on \(\pi_i \) for \(n \leq i \leq k \), and onto on \(\pi_k \). In fact, since we extend \(f_k \) on \((k + 1)\)-cells, we only need to check the effect on \(\pi_k \). The elements of \(\ker(g) \) on \(\pi_k \) are represented by nullhomotopic maps (by construction) \(S^k \to Z_k \subset Y_{k+1} \to X \). So \(g_* \) is one-to-one on \(\pi_k \). Moreover, it is onto on \(\pi_k \) since, by hypothesis, the composition \(\pi_k(Z_k) \to \pi_k(Y_{k+1}) \to \pi_k(X) \) is onto.

Let \(\{ \phi_\beta : S^{k+1} \to X \} \) be a generator of \(\pi_{k+1}(X, x_0) \) and let \(Z_k = Y_{k+1} \vee S^{k+1}_\beta \). We now get a map \(f_{k+1} : Z_{k+1} \to X \), by defining \(f_{k+1}|_{S^{k+1}_\beta} = \phi_\beta \). This implies that \(f_{k+1} \) induces an epimorphism on \(\pi_{k+1} \). The remaining conditions on homotopy groups are easy to check. \(\square \)