Contents

1 Fibrations. Fiber Bundles .. 1
 1.1 Stiefel Manifolds ... 1
 1.2 Grassmann Manifolds ... 2
 1.3 Maps on Fibrations and Fiber Bundles 4
 1.4 Turning Maps into Fibrations 5

2 Spectral Sequences .. 6
 2.1 Definitions .. 6
 2.2 Hurewicz Theorem Redux .. 8

1 Fibrations. Fiber Bundles

1.1 Stiefel Manifolds

Definition 1. Define

\[V_n(\mathbb{R}^k) : = \{ n\text{-frames in } \mathbb{R}^k \} , \]

where an \(n \)-frame is defined to be a sequence \(\{ v_1, \ldots, v_n \} \) of \(n \) linearly independent vectors in \(\mathbb{R}^k \) which are pairwise orthonormal: \(\langle v_i, v_j \rangle = \delta_{ij} \).

Example 1.

\[V_1(\mathbb{R}^1) = S^{k-1} \]

Example 2.

\[V_n(\mathbb{R}^n) \cong O(n) \]
We assign \(V_n(\mathbb{R}^k) \) the subspace topology induced from

\[
V_n(\mathbb{R}^k) \subset S^{k-1} \times \cdots \times S^{k-1},
\]

where \(S^{k-1} \times \cdots \times S^{k-1} \) has the usual product topology.

Exercise: Show that \(V_n(\mathbb{R}^k) \) is a CW complex.

1.2 Grassmann Manifolds

Definition 2. Define

\[
G_n(\mathbb{R}^k) := \{n\text{-dimensional vector subspaces in } \mathbb{R}^k\}.
\]

Example 3.

\(G_1(\mathbb{R}^k) = \mathbb{RP}^{k-1} \)

There is a map \(p : V_n(\mathbb{R}^k) \longrightarrow G_n(\mathbb{R}^k) \) given by sending \(\{v_1, \ldots, v_n\} \mapsto \text{span}\{v_1, \ldots, v_n\} \).

Claim 1. \(p \) is onto, so \(G_n(\mathbb{R}^k) \) has the quotient topology.

Proof Let \(V \in G_n(\mathbb{R}^k) \). Choose a basis and make it orthonormal by the Gram-Schmidt procedure.

Claim 2. \(p \) is a fiber bundle with fiber \(O(n) = V_n(\mathbb{R}^k) \).

Proof Let \(V \in G_n(\mathbb{R}^k) \) and choose an orthonormal frame on \(V \). By projection and Gram-Schmidt, we get orthonormal frames on all “nearby” (in some neighborhood \(U \) of \(V \)) vector subspaces \(V' \). This is a continuous process. The existence of such frames allows us to identify \(p^{-1}(U) \) with \(U \times V_n(\mathbb{R}^n) \), where \(V_n(\mathbb{R}^n) \) is now identified as the fiber.

Claim 3. The same method gives a fiber bundle for all triples \(m < n \leq k \).

\[
\begin{array}{c}
V_{n-m}(\mathbb{R}^{k-m}) \longrightarrow V_n(\mathbb{R}^k) \longrightarrow V_m(\mathbb{R}^k) \\
\{v_1, \ldots, v_n\} \longrightarrow \{v_1, \ldots, v_m\}
\end{array}
\]

(Think of orthogonal complements for the fiber.)
Example 4. If \(k = n \) in the bundle (1), we get the fiber bundle

\[
O(n - m) \longrightarrow O(n) \longrightarrow V_m(\mathbb{R}^n).
\]

If, moreover, \(m = 1 \), we get the fiber bundle

\[
\begin{array}{ccc}
O(n - 1) & \longrightarrow & \{0\} \\
A & \mapsto & \begin{pmatrix} A & 0 \\ 0 & 1 \end{pmatrix}
\end{array}
\begin{array}{c}
\longrightarrow \\
B & \mapsto & Bu
\end{array}
\longrightarrow S^{n-1}
\]

(2)

where \(u \in S^{n-1} \) is some fixed unit vector.

Example 5. If \(m = 1 \) in the bundle (1), we get the fiber bundle

\[
V_{n-1}(\mathbb{R}^{k-1}) \longrightarrow V_n(\mathbb{R}^k) \longrightarrow S^{k-1}.
\]

(3)

Claim 4. \(V_n(\mathbb{R}^k) \) is \((k - n - 1)\)-connected.

Proof Exercise. Use the long exact sequence for bundle (3) and induction.

The long exact sequence of homotopy groups for the bundle (2) shows that \(\pi_i(O(n)) \) is independent of \(n \) for \(n \) large. We call this stable homotopy group \(\pi_i(O) \).

Bott Periodicity: \(\pi_i(O) \) is periodic in \(i \) with period 8.

<table>
<thead>
<tr>
<th>(i)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\pi_i(O))</td>
<td>(\mathbb{Z}/2)</td>
<td>(\mathbb{Z}/2)</td>
<td>0</td>
<td>(\mathbb{Z})</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>(\mathbb{Z})</td>
</tr>
</tbody>
</table>

(There is a nice proof of this in Milnor’s *Morse Theory*, Section 24.)

Definition 3.

\[
V_n(\mathbb{R}^\infty) := \bigcup_{k=1}^{\infty} V_n(\mathbb{R}^k) \quad \quad G_n(\mathbb{R}^\infty) := \bigcup_{k=1}^{\infty} G_n(\mathbb{R}^k)
\]

The space \(G_n(\mathbb{R}^\infty) \) is called the **classifying space for real vector bundles**.

\(G_n(\mathbb{R}^\infty) \) carries a lot of topological information. We can get a “limit” fiber bundle:

\[
\begin{array}{ccc}
O(n) & \longrightarrow & V_n(\mathbb{R}^\infty) \\
\longrightarrow & & \longrightarrow
\end{array}
\begin{array}{c}
G_n(\mathbb{R}^\infty)
\end{array}
\]

(4)

Claim 5. \(V_n(\mathbb{R}^\infty) \) is contractible.
Proof By the bundle (3) for $k \to \infty$, $\pi_i(V_n(\mathbb{R}^\infty)) = 0$ for all i. Using the CW structure and Whitehead’s Theorem shows that $V_n(\mathbb{R}^\infty)$ is contractible.

Alternatively, we can define an explicit homotopy $h_t : \mathbb{R}^\infty \longrightarrow \mathbb{R}^\infty$ by

$$h_t(x_1, x_2, \ldots) := (1 - t)(x_1, x_2, \ldots) + t(0, x_1, x_2, \ldots).$$

Then h_t is linear with $\ker h_t = \{0\}$. So h_t preserves independence of vectors. Composing with Gram-Schmidt, we get a deformation of $V_n(\mathbb{R}^\infty)$ into the subspace of n-frames with first coordinate zero. Repeat this procedure n times to get a deformation of $V_n(\mathbb{R}^\infty)$ to the subspace of n-frames with first n coordinates zero.

Let $\{e_1, \ldots, e_n\}$ be the standard n-frame in \mathbb{R}^∞. For an n-frame $\{v_1, \ldots, v_n\}$ of vectors with first n coordinates zero, define a homotopy $k_t : V_n(\mathbb{R}^\infty) \longrightarrow V_n(\mathbb{R}^\infty)$ by

$$k_t(\{v_1, \ldots, v_n\}) := [(1 - t)\{v_1, \ldots, v_n\} + t\{e_1, \ldots, e_n\}] \circ (\text{Gram-Schmidt}).$$

Then k_t preserves linear independence and orthonormality by Gram-Schmidt.

Composing h_t and k_t, any n-frame is moved continuously to $\{e_1, \ldots, e_n\}$, the standard n-frame.

Over \mathbb{C}, we get fiber bundles

$$U(n) \hookrightarrow V_n(\mathbb{C}^k) \xrightarrow{p} G_n(\mathbb{C}^k).$$

As $k \to \infty$, we get

$$U(n) \hookrightarrow V_n(\mathbb{C}^\infty) \xrightarrow{p} G_n(\mathbb{C}^\infty).$$

Also

$$U(n - 1) \hookrightarrow U(n) \longrightarrow \mathbb{S}^{2n-1}.$$ (7)

The long exact sequence of homotopy groups then shows that $\pi_i(U(n))$ is stable for large n. This stable group $\pi_i(U)$ repeats itself with period 2.

1.3 Maps on Fibrations and Fiber Bundles

Definition 4. Given two fibrations $p_i : E_i \longrightarrow B$, $i = 1, 2$, a map $f : E_1 \longrightarrow E_2$ is fiber-preserving (f.p.) if the diagram

$$
\begin{array}{ccc}
E_1 & \xrightarrow{f} & E_2 \\
\downarrow{p_1} & & \downarrow{p_2} \\
B & & B
\end{array}
$$
commutes. Such an \(f \) is called a **fiber homotopy equivalence (f.h.e.)** if \(f \) is both f.p. and a homotopy equivalence, i.e., there is a map \(g : E_2 \longrightarrow E_1 \) such that \(f \) and \(g \) are f.p. and \(f \circ g \) and \(g \circ f \) are homotopic to \(id \) by f.p. maps.

Exercise: If \(p : E \longrightarrow B \) is a fibration over a contractible space \(B \), then \(p \) is f.h.e. to the trivial fibration \(B \times F \longrightarrow B \).

Remark 1.
1. Fibers of a fiber bundle are homeomorphic (to, say, \(p^{-1}(b) \)).
2. Fibers of a fibration are homotopy equivalent.

1.4 Turning Maps into Fibrations

Given a map \(f : A \longrightarrow B \), we would like to factor \(f \) as a composition of a homotopy equivalence and a fibration.

Construct

\[
A \xleftarrow{\text{h.e.}} \xrightarrow{\text{fibration}} E_f \xrightarrow{p} B
\]

where

\[
E_f := \{ (a, \gamma) \mid a \in A, \gamma : [0, 1] \longrightarrow B, \gamma(0) = f(a) \}
\]

is endowed with the compact-open topology. Define \(i : A \longrightarrow E_f \) by sending \(a \mapsto (a, c_{f(a)}) \), where \(c_{f(a)} \) denotes the constant path at \(f(a) \). Define \(p : E_f \longrightarrow B \) by sending \((a, \gamma) \mapsto \gamma(1) \). Then \(f = p \circ i \).

Theorem 1.1 \(p : E_f \longrightarrow B \) is a fibration.

Example 6 (\(P_B \) and \(\Omega B \)).

Take \(A = \{ b \} \) and \(f \) the inclusion \(f : \{ b \} \hookrightarrow B \). Then

\[
E_f = \{ (b, \gamma) \mid \gamma : [0, 1] \longrightarrow B, \gamma(0) = b \} =: P_B,
\]

the **path-space** of \(B \). The fiber over \(b \) of \(p : P_B \longrightarrow B \) is

\[
\Omega B := \{ \gamma : [0, 1] \longrightarrow B \mid \gamma(0) = \gamma(1) = b \},
\]

the **loop-space** of \(B \). We get a fibration

\[
\Omega B \xleftarrow{\text{contractible}} P_B \longrightarrow B,
\]

whence the long exact sequence of homotopy groups gives

\[
\pi_i(B) \cong \pi_{i-1}(\Omega B),
\]

for all \(i \).

The above example suggests Hurewicz can be proved by induction on the degree of connectivity. (If \(B \) is \(n \)-connected, then \(\Omega B \) is \((n - 1) \)-connected.) We’ll give the details later via spectral sequences.
2 Spectral Sequences

2.1 Definitions

For what we are concerned with, we’ll start with a fibration $F \hookrightarrow E \twoheadrightarrow B$. Then we can intuitively regard spectral sequences as machines which, for example, take $H_*(F)$ and $H_*(B)$ as input data and output information about $H_*(E)$.

Definition 5. A spectral sequence is given by a sequence of (co-)chain groups $\{E^r_{*,*}, d^r\}_{r \geq 0}$ such that

$$E^0_{*,*} = H_*(E).$$

In more detail, we have groups (rings, modules, etc.) $\{E^r_{p,q}\}$ and maps

$$d^r : E^r_{p,q} \longrightarrow E^r_{p-r,q+r-1}$$

such that $(d^r)^2 = 0$ and

$$E^r_{p,q} := \frac{\ker (d^r : E^r_{p,q} \longrightarrow E^r_{p-r,q+r-1})}{\text{im} (d^r : E^r_{p+r,q-r+1} \longrightarrow E^r_{p,q})}.$$

We focus on the first quadrant spectral sequence in (p, q)-space, so $E^r_{p,q} = 0$ whenever $p < 0$ or $q < 0$. Hence, for any fixed (p, q) in the first quadrant and for sufficiently large r, $d^r = 0$, so that $E^r_{p,q} = E^{r+1}_{p,q} = \cdots = E^\infty_{p,q}$.

Definition 6. If $\{H_n\}_n$ are groups (rings, modules, etc.), we say the spectral sequence converges, or abuts, to H_* if for each n there is a filtration

$$H_n = D_{n,0} \supseteq D_{n-1,1} \supseteq \cdots \supseteq D_{0,n} \supseteq D_{-1,n+1} = 0$$

so that, for all p, q,

$$E^\infty_{p,q} = \frac{D_{p,q}}{D_{p-1,q+1}}.$$
To read off H_n from E_∞, we need to solve some extension problems. But if $E_{s,s}$ and H_s are vector spaces, then

$$H_n = \bigoplus_{p+q=n} E_{p,q}^\infty.$$

Remark 2. The following observation is very useful in practice:

- If $E_{p,q}^\infty = 0$, for all $p + q = n$, then $H_n = 0$.
- If $H_n = 0$, then $E_{p,q}^\infty = 0$ for all $p + q = n$.

Theorem 2.1 (Serre) If $p : E \to B$ is a fibration with fiber F, and with $\pi_1(B) = 0$ and $\pi_0(F) = 0$, then there is a first quadrant spectral sequence with $E_{p,q}^2 = H_p(B; H_q(F))$ converging to $H^*(E)$.

Remark 3. Fix some coefficient group k. Then:

- $E_{p,0}^2 = H_p(B; H_0(F; \mathbb{k})) = H_p(B; \mathbb{k})$, where $H_0(F; \mathbb{k}) = \mathbb{k}$
- $E_{0,q}^2 = H_0(B; H_q(F; \mathbb{k})) = H_q(F; \mathbb{k})$
2.2 Hurewicz Theorem Redux

We can now give a new proof of the

Hurewicz Theorem: If X is $(n-1)$-connected, $n \geq 2$, then $\tilde{H}_i(X) = 0$ for $i \leq n-1$ and $\pi_n(X) \cong H_n(X)$.

Proof Idea: Use the Serre spectral sequence for the path fibration:

$$
\begin{array}{ccc}
\Omega X & \hookrightarrow & P_X \\
\approx \{ \ast \} & \longrightarrow & X.
\end{array}
$$

Then the statement for π_n would follow by induction from the sequence of isomorphisms:

$$
\pi_n(X) \cong \pi_{n-1}(\Omega X) \cong H_{n-1}(\Omega X) \cong H_n(X).
$$

The first isomorphism follows from the long exact sequence on homotopy groups of fibrations and the fact that $P_X \cong \{ \ast \}$. The second isomorphism follows from the induction hypothesis. So the problem reduces to showing the last isomorphism $H_{n-1}(\Omega X) \cong H_n(X)$.

For $n = 2$, i.e., the beginning of induction, we clearly have $H_1(X) = 0$ since X is simply-connected, and

$$
\pi_2(X) \cong \pi_1(\Omega X) \cong \frac{\pi_1(\Omega X)}{\text{abelianization}} \cong H_1(\Omega X) \cong H_2(X).
$$

So it remains to show the isomorphism $H_1(\Omega X) \cong H_2(X)$.

Diagram:

```
\begin{tikzpicture}
\node (E2) at (0,1) {$E^2$};
\node (HsF) at (0,0) {$H_*(F)$};
\node (HsB) at (1,0) {$H_*(B)$};
\node (0) at (0,-1) {0};
\node (0) at (1,-1) {0};
\draw[->] (E2) -- (HsF);
\draw[dashed,->] (HsF) -- (HsB);
\draw[->] (HsB) -- (0);
\end{tikzpicture}
```
Consider the E_2-page of the Serre spectral sequence for the path fibration.

We need to show $d^2 : H_2(X) \longrightarrow H_1(\Omega X)$ is an isomorphism.

Since $\{E^2_{p,q}\} \Rightarrow H_*(PX)$ and PX is contactible, we have that $E^\infty_{p,q} = 0$ for all $p, q > 0$. Hence, if $d^2 : H_2(X) \longrightarrow H_1(\Omega X)$ is not an isomorphism, then $E^3_{0,1} \neq 0$, $E^3_{2,0} = \ker d^2 \neq 0$. But the differentials d^3 and higher will not affect $E^3_{0,1}$ and $E^3_{2,0}$. So they live at E^∞, contradicting that $E^\infty = 0$ at these spots.

Now assume the statement of the Hurewicz theorem holds for $n - 1$ and prove it for n. To show that $\pi_n(X) \cong H_n(X)$, it suffices to show $H_{n-1}(\Omega X) \cong H_n(X)$.

By induction $H_{q \leq n-2}(\Omega X) = 0$, so $E^2_{p,q} = 0$ for all $0 < q < n - 1$. Hence, the differentials $d^2, d^3 \cdots d^{n-1}$ acting on the entries on the p-axis for $p \leq n$, do not affect these entries. The entries $H_n(X)$ and $H_{n-1}(\Omega X)$ are affected only by the differential d^n. Also, higher differentials starting with d_{n+1} do not affect these entries. But since the spectral sequence abuts to $H_*(PX)$ with PX contactible, all entries on the E^∞-
page (except at the origin) must vanish. This forces $H_i(X) = 0$ for $1 \leq i \leq n - 1$. Similarly, $d^n : H_n(X) \longrightarrow H_{n-1}(\Omega X)$ must be an isomorphism.