1. Use homotopy groups in order to show that there is no retraction \(\mathbb{R}P^n \to \mathbb{R}P^k \) if \(n > k > 0 \).

2. Show that an \(n \)-connected, \(n \)-dimensional CW complex is contractible.

3. (Extension Lemma) Given a CW pair \((X, A) \) and a map \(f : A \to Y \) with \(Y \) path-connected, show that \(f \) can be extended to a map \(X \to Y \) if \(\pi_{n-1}(Y) = 0 \) for all \(n \) such that \(X \setminus A \) has cells of dimension \(n \).

4. Show that a CW complex retracts onto any contractible subcomplex. (Hint: Use the above extension lemma.)

5. Show that a CW complex is contractible if it is the union of an increasing sequence of subcomplexes \(X_1 \subset X_2 \subset \cdots \) such that each inclusion \(X_i \hookrightarrow X_{i+1} \) is nullhomotopic. Conclude that \(S^\infty \) is contractible, and more generally, this is true for the infinite suspension \(\Sigma^\infty(X) := \bigcup_{n \geq 0} \Sigma^n(X) \) of any CW complex \(X \).

6. Use cellular approximation to show that the \(n \)-skeletons of homotopy equivalent CW complexes without cells of dimension \(n + 1 \) are also homotopy equivalent.

7. Show that a closed simply-connected 3-manifold is homotopy equivalent to \(S^3 \). (Hint: Use Poincaré Duality, and also the fact that closed manifolds are homotopy equivalent to CW complexes.)

8. Suppose \(X \) is a CW complex with \(\tilde{H}_i(X; \mathbb{Z}) = 0 \) for all \(i \geq 0 \). Show that the suspension of \(X \) is contractible.

9. Show that a map \(f : X \to Y \) of connected CW complexes is a homotopy equivalence if it induces an isomorphism on \(\pi_1 \) and if a lift \(\tilde{f} : \tilde{X} \to \tilde{Y} \) to the universal covers induces an isomorphism on homology.

10. Show that \(\pi_7(S^4) \) is non-trivial. [Hint: It contains a \(\mathbb{Z} \)-summand.]
11. Prove that the space $SO(3)$ of orthogonal 3×3 matrices with determinant 1 is homeomorphic to $\mathbb{R}P^3$.

12. (a) Show that if $S^k \to S^m \to S^n$ is a fiber bundle, then $k = n - 1$ and $m = 2n - 1$.
(b) Show that if there were fiber bundles $S^{n-1} \to S^{2n-1} \to S^n$ for all n, then the groups $\pi_i(S^n)$ would be finitely generated free abelian groups computable by induction, and non-zero if $i \geq n \geq 2$.